For discussion at February 4, 2019 MIWG

4 Market Services: Rights and Obligations

Effective Date: 6/30/2010 - Page 1

4.1 Market Services - General Rules

4.1.1 Overview

Market Services include all services and functions performed by the ISO under this Tariff related to the sale and purchase of Energy, Capacity or Demand Reductions, and the payment to Suppliers who provide Ancillary Services in the ISO Administered Markets.

4.1.2 Independent System Operator Authority

The ISO shall provide all Market Services in accordance with the terms of the ISO Services Tariff and the ISO Related Agreements. The ISO shall be the sole point of Application for all Market Services provided in the NYCA. Each Market Participant that sells or purchases Energy, including Demand Side Resources, Special Case Resources and Emergency Demand Response Program participants, sells or purchases Capacity, or provides Ancillary Services in the ISO Administered Markets utilizes Market Services and must take service as a Customer under this Tariff and enter into a Service Agreement under the Tariff, as set forth in Attachment A; each entity that withdraws Energy to supply Load within the NYCA or provides Installed Capacity to an LSE serving Load within the NYCA utilizes the Control Area Services provided by the ISO and benefits from the reliability achieved as a result of ISO Control Area Services, must take service as a Customer under this Tariff and enter into a Service Agreement under this Tariff, as set forth in Attachment A; and each entity that has its virtual bids accepted and thereby engages in Virtual Transactions and each entity that purchases Transmission Congestion Contracts, excluding Transmission Congestion Contracts that are created prior to January 1, 2010, utilizes Market Services and must take service as a Customer under this Tariff and enter into a Services Agreement under this Tariff, as set forth in Attachment A. Each Customer that

utilizes Market Services also utilizes Transmission Service and shall obtain Transmission Service under the ISO OATT.

4.1.3 Informational and Reporting Requirements

The ISO shall operate and maintain an OASIS, including a Bid/Post System that will facilitate the posting of Bids to supply Energy, and Ancillary Services and Demand Reductions by Suppliers for use by the ISO and the posting of Locational Based Marginal Prices ("LBMP") and schedules for accepted Bids for Energy, and Ancillary Services and Demand Reductions.

The Bid/Post System will be used to post schedules for Bilateral Transactions. The Bid Post System also will provide historical data regarding Energy and Capacity market clearing prices in addition to Congestion Costs.

4.1.4 Scheduling Prerequisites

Pursuant to ISO Procedures, each Transaction offered in the Energy, Installed Capacity, Ancillary Services or Transmission Congestion Contract market shall be subject to a minimum size of one (1) megawatt ("MW"), provided however, the minimum size of each Transaction offered in the Energy, Installed Capacity or Ancillary Services Market on behalf of Energy Storage Resources and Aggregations shall be one tenth (0.1) of one MW. Regulation Service may be offered in tenths of a MW. Pursuant to ISO Procedures, Special Case Resources may offer a minimum of 100 kW of Unforced Capacity in the Installed Capacity Market. Each Transaction above one (1) megawatt may be scheduled in tenths of a megawatt provided, however, Bilateral Transactions and External Transactions in the LBMP Market must be bid and scheduled in increments of one (1) megawatt.

4.1.5 Communication Requirements for Market Services

Customers and Transmission Customers shall utilize Internet service providers to access the ISO's OASIS and bid/post system. Customers shall arrange for and maintain all communications facilities for the purpose of communication of commercial data to the ISO. Each Customer shall be the customer of record for the telecommunications facilities and services its uses and shall assume all duties and responsibilities associated with the procurement, installation and maintenance of the subject equipment and software.

4.1.6 Customer Responsibilities

All purchasers in the Day-Ahead or Real-Time Markets who withdraw Energy within the NYCA to serve Load, or at an NYCA Interconnection with another Control Area must obtain Transmission Service under the ISO OATT. All Customers requesting service under the ISO Services Tariff to engage in Virtual Transactions must obtain Transmission Service under the ISO OATT.

All LSEs serving Load in the NYCA must comply with the Installed Capacity requirements set forth in Article 5 of this ISO Services Tariff.

All Customers taking service under the ISO Services Tariff must pay the Market

Administration and Control Area Services Charge, as specified in Rate Schedule 1 of this ISO

Services Tariff.

A Supplier with a Generator or <u>Demand Side Resource Aggregation</u> with a real time physical operating problem that makes it impossible for it to operate in the bidding mode in which it was scheduled shall notify the NYISO.

4.1.7 Customer Compliance with Laws, Regulations and Orders

All Customers shall comply with all applicable federal, state and local laws, regulations and orders, including orders from the ISO.

- 4.1.7.1 Violations of FERC's orders, rules and regulations also violate this

 Section 4.1.7 of the ISO Services Tariff. In particular, if FERC or a court of
 competent jurisdiction determines there has been a violation of FERC's
 regulations related to electric energy market manipulation (see 18 C.F.R. Section
 1c.2, or any successor provision thereto), such violation is also a violation of this
 ISO Services Tariff if such violation affects or is related to the ISO Administered
 Markets.
- 4.1.7.2 If the ISO becomes aware that a Customer may be engaging in, or might have engaged in, electric energy market manipulation, it shall promptly inform its Market Monitoring Unit.
- 4.1.7.3 This Section 4.1.7 of the ISO Services Tariff does not independently empower the ISO or its Market Monitoring Unit to impose penalties for, or to provide a remedy for, violations of FERC's prohibition against electric energy market manipulation, or for other violations of the ISO's Tariffs.

4.1.8 Commitment for Reliability

Suppliers with generating units committed by the ISO for service to ensure NYCA reliability or local system reliability, except for Behind-the-Meter Net Generation Resources, and Energy Storage Resources, and Aggregations, will recover startup and minimum generation costs that were not bid, that were not known before the close of the Real-Time Scheduling Window, and that were not recovered in the Dispatch Day, provided however, eligibility to recover such

additional costs shall not be available for megawatts scheduled Day-Ahead. Payment for such costs shall be determined, as if bid, pursuant to the provisions of Attachment C of this Tariff. Payments for securing NYCA reliability and local system reliability shall be recovered by the ISO in accordance with Rate Schedule 1 of the ISO OATT.

Re-dispatching costs incurred as a result of reductions in Transfer Capability caused by Storm Watch ("Storm Watch Costs") shall be aggregated and recovered on a monthly basis by the ISO exclusively from Transmission Customers in Load Zone J. The ISO shall calculate Storm Watch Costs by multiplying the real-time Shadow Price of any binding constraint associated with a Storm Watch, by the higher of (a) zero; or (b) the scheduled Day-Ahead flow across the constraint minus the actual real-time flow across the constraint.

4.1.9 Cost Recovery for Units Responding to Local Reliability Rules Addressing Loss of Generator Gas Supply

4.1.9.1 Eligibility for Cost Recovery

Generating units designated pursuant to the New York State Reliability Council's Local Reliability Rule addressing the Loss of Generator Gas Supply for Generators located in New York City or the Local Reliability Rule addressing the Loss of Generator Gas Supply for Generators located on Long Island, as being required either to burn an alternate fuel at designated minimum levels, or to activate their auto-swap capability, based on forecast Load levels in Load Zones J and K (for purposes of this Section 4.1.9, "Eligible Units"), shall be eligible to recover costs associated with burning the required alternate fuel when one of the specified Local Reliability Rules is invoked. For purposes of this Section 4.1.9, the periods of time in which the Eligible Unit burns the alternate fuel only because one of the Local Reliability Rules_addressing the loss of gas supply for Generators located in New York City or on Long

Island has been invoked, including that period of time required for an Eligible Unit to move into and out of compliance with a Local Reliability Rule addressing the Loss of Generator Gas Supply, shall be referred to as the "Eligibility Period."

4.1.9.1.1 Obligation to Test Automatic Fuel Swap Capability and Eligibility to Recover Costs of Performing Fuel Swap Tests

Combined cycle Generating units designated pursuant to the New York State Reliability Council's Local Reliability Rules addressing the Loss of Generator Gas Supply for Generators located in New York City, which have the ability to automatically swap from natural gas to a liquid fuel source in the event of the sudden interruption of gas fuel supply or loss of gas pressure or the unavailability of gas supply to the Generator, shall:

- (a) develop test procedures that are consistent with the requirements of the applicableLocal Reliability Rule and ISO Procedures; and
- (b) successfully test to demonstrate that the designated combined cycle units are able to automatically swap from natural gas to a liquid fuel source each Capability Period.

The requirement to perform a test each Capability Period can be met by performing a real-time automatic fuel swap, if that fuel swap was successful and occurred during the relevant Capability Period. The scheduling of a test to demonstrate that a designated combined cycle unit is able to automatically swap from natural gas to a liquid fuel source in real-time operations shall be coordinated with the ISO and with the Transmission Owner in whose subzone the Generator is located, consistent with ISO Procedures.

The period during which combined cycle Eligible Units are performing scheduled automatic fuel swap testing, including that period of time required for an Eligible Unit to move

into and out of compliance with a Local Reliability Rule addressing the Loss of Generator Gas Supply, is an "Eligibility Period."

4.1.9.2 Variable Operating Cost Recovery

For Eligibility Periods, Eligible Units burning an alternate fuel that would not have been burned but for Local Reliability Rules addressing the loss of gas supply for Generators located in New York City or on Long Island being invoked and Eligible Units burning an alternate fuel because they activated their auto-swap capability and experienced a swap to the alternate fuel that would not have occurred but for the operation of the auto-swap capability in accordance with the implementation of the Local Reliability Rules addressing the loss of gas supply for Generators located in New York City or on Long Island shall recover costs that vary with the amount of alternate fuel burned ("variable operating costs") if: (i) such costs are not reflected in the reference level for that Eligible Unit for the hours included in the Eligibility Period, pursuant to ISO Procedures, and (ii) the hour is one for which the commodity cost of the alternate fuel including taxes and emission allowance costs is greater than the commodity cost for natural gas, including taxes and emission allowance costs, as determined by the ISO. These relative commodity cost determinations shall use the same indices used by the ISO to establish daily Reference Levels. Variable operating costs shall include the commodity cost, associated taxes and emission allowance costs, of the required alternate fuel burned during an Eligibility Period pursuant to Local Reliability Rules addressing the loss of gas supply for Generators located in New York City or on Long Island. The owner or bidder of an Eligible Unit shall notify the ISO when variable operating costs change due to a change in tax rates.

4.1.9.3 Additional Cost Recovery

An Eligible Unit that seeks to recover costs incurred in connection with its compliance with Local Reliability Rules addressing the loss of gas supply for Generators located in New York City or on Long Island, in addition to the commodity cost, associated taxes and emission allowance cost recovery specified in Section 4.1.9.2, shall negotiate an Implementation Agreement with the ISO. The Eligible Unit and the ISO shall consult with and consider the input of the New York State Public Service Commission, and the Transmission Owner designated by the applicable Local Reliability Rule addressing the loss of gas supply for Generators located in New York City or on Long Island. Such Implementation Agreements shall specify, among other terms and conditions, the facilities (or portions of facilities) used to meet obligations under the Local Reliability Rule addressing the loss of gas supply for Generators located in New York City or on Long Island. The Implementation Agreement shall indicate the rate to be charged during the period of the Implementation Agreement to recover such additional costs.

The Implementation Agreement may also include costs in addition to commodity cost, associated taxes and emission allowance costs of the alternate fuel incurred in connection with compliance with Local Reliability Rules addressing the loss of gas supply for Generators located in New York City or on Long Island that vary with the amount of alternate fuel burned because a Local Reliability Rule addressing the loss of gas supply was invoked. These variable costs shall be paid pursuant to Section 4.1.9.2 as variable operating costs so as to not duplicate payments.

Each such Implementation Agreement shall have a duration of one or more Capability

Periods and shall commence at the beginning of a Capability Period unless another date is

approved by the Commission. If the Eligible Unit and the ISO reach agreement on the terms and
conditions of the Implementation Agreement, the ISO shall file it with the Commission for its

review and acceptance.

In the event that the Eligible Unit and the ISO have not come to an agreement six months prior to the beginning of the Capability Period that the Implementation Agreement is intended to govern, then either one of them may request the assistance of the Commission's Dispute Resolution Service. If the Dispute Resolution Service agrees to provide its assistance the Eligible Unit and the ISO shall participate in whatever dispute resolution process the Dispute Resolution Service may recommend. The Commission's Dispute Resolution Service may include other stakeholders to the extent confidentiality protections are in place. If, however, there is no agreement four months prior to the beginning of the relevant Capability Period then the Eligible Unit and the ISO may each file an unexecuted Implementation Agreement for the Commission's review and acceptance.

In the event that any provisions of this Section 4.1.9 are modified prior to the termination date of any Commission-accepted Implementation Agreement, such Implementation Agreement will remain in full force and effect until it expires in accordance with its contractual terms and conditions.

Rules for establishing Eligibility Periods shall be specified in ISO Procedures.

4.1.9.4 Billing

Payments made by the ISO to the Eligible Unit to pay variable operating costs and to pay the rate established by the Implementation Agreement pursuant to this Section 4.1.9 shall be in addition to any LBMP, Ancillary Service or other revenues received as a result of the Eligible Unit's Day-Ahead or Real-Time dispatch for that day. Payment by the ISO of variable operating costs pursuant to Section 4.1.9.2 shall be based on the Eligibility Period, quantity of alternate fuel burned, and relative costs of alternate fuel compared to natural gas. Payment by the ISO of

the rate established in the Implementation Agreement for costs incurred other than variable operating costs shall be made as part of the ISO billing cycle regardless of which Local Reliability Rule addressing the loss of gas supply an alternate fuel is burned pursuant to, and regardless of the relative cost of the alternate fuel compared to natural gas reflected in reference levels.

4.1.9.5 Other Provisions

The ISO shall make available for the Transmission Owner in whose subzone the Generator is located: (i) the identity of Generators determined by the ISO to be eligible to recover the costs associated with burning the required alternate fuel pursuant to the provisions of this Section 4.1.9; (ii) the start and stop hours for each claimed Eligibility Period and (iii) the amount of alternate fuel for which the Generator has sought to recover variable operating costs.

4.1.10 **Supplier Aggregations**

Suppliers may aggregate individual Distributed Energy Resources physically located within the NYCA to provide Energy, Capacity and Ancillary Services. Demand Side Resources participating in the Emergency Demand Response Program and Aggregations of Special Case Resources shall follow the rules set forth in Services Tariff Sections 22 (Att. G) and 5.12.11, respectively. Each Aggregation shall be offered as a single unit and all bidding and offer obligations under the ISO Tariffs apply to the Aggregation (or Aggregator, where appropriate) not the individual Distributed Energy Resources. An Aggregation that offers a combination of generation, Demand Reduction and storage, or any subset thereof, must be able to offer at least 100 kW of each individual response type included in the Aggregation.

Each Aggregation must meet the minimum eligibility and performance requirements to

Energy Resources within an Aggregation are not individually required to meet the minimum eligibility and performance requirements to participate in the ISO-administered wholesale markets. Generators with PURPA contracts, Limited Control Run of River Resources, Behind-the-Meter Net Generation Resources, Municipally-owned Generation, System Resources and Control Area System Resources are ineligible to participate in an Aggregation.

4.1.10.1 Aggregation Composition

Aggregations must contain at least two individual resources, except that a single

Dispatchable Demand Side Resource may participate as a single-resource Aggregation. The

maximum physical injection capability for an individual resource in an Aggregation is 20 MW.

Individual resources with a nameplate capability greater than 20 MW may participate in an

Aggregation if sufficient physical protection and control schemes exist to limit the injection

capability of the Distributed Energy Resource to 20 MW or less. There is no maximum Demand

Reduction capability for Dispatchable Demand Side Resources participating in a Dispatchable

DER Aggregation.

Aggregations may comprise a single Resource type or multiple Resource types.

Aggregations that comprise a single Resource type shall follow the rules associated with that Resource type (e.g., an Aggregation of Energy Storage Resources shall be bound by the rules applicable to Energy Storage Resources). Aggregated Intermittent Power Resources, Energy Limited Resources, Capacity Limited Resources, and Limited Energy Storage Resources shall constitute a single Resource type Aggregation only when the individual resources in the Aggregation have the same Intermittent, Energy Limiting, or Capacity Limiting characteristic (e.g., an Aggregation of only solar resources, or an Aggregation of only pumped storage

resources). Aggregations with multiple types of Intermittent Power Resources, Energy Limited

Resources, Capacity Limited Resources, and Limited Energy Storage Resources shall follow the

Dispatchable DER Aggregation Rules.

Aggregations that comprise more than one single Resource type, and Aggregations comprising only Dispatchable Demand Side Resources shall follow the rules associated with Distributed Energy Resource Aggregations.

Aggregations that include at least one Withdrawal-Eligible Generator may submit Bids to withdraw Energy. For the purpose of measuring Aggregation compliance with Base Point Signals, Aggregations that include at least one Withdrawal-Eligible Generator will be measured based on their net performance; that is, Energy injections and Demand Reductions (*i.e.*, supply) will be offset by Energy withdrawals.

Aggregators shall not offer any Distributed Energy Resource as part of an Aggregation that is participating in the ISO-Administered wholesale markets in another Aggregation or individually.

4.1.10.2 Aggregation Electrical Footprint

The ISO shall establish a set of Transmission Nodes in the New York Control Area at which individual resources may aggregate, and shall identify each such Transmission Node in the ISO Procedures. In accordance with ISO Procedures, the ISO shall consult with the appropriate Member System prior to identifying a Transmission Node. Aggregators shall identify, after consultation with the interconnecting utility, the Transmission Node for each Aggregation. All resources in an Aggregation must be electrically located in the State of New York, and electrically connected to the same ISO-identified Transmission Node. Aggregators may enroll one or more Aggregations at a Transmission Node.

The ISO-published set of Transmission Nodes may change from time to time due to underlying conditions on the New York State Transmission System and the underlying distribution systems. The ISO shall review and update (if needed) the identified Transmission Nodes on an annual basis, and will post a notice of any changes to the identified Transmission Nodes ninety (90) days prior to the beginning of the Capability Year, and such changes shall take effect on the first day of the Capability Year. Aggregators shall certify, in accordance with ISO Procedures, that Aggregations affected by changes to Transmission Nodes meet all requirements of this Section.

4.1.10.3 Resources Changing Aggregations

An individual resource may leave its current Aggregation and/or join a new Aggregation to be effective at the start of a calendar month. Registration of Resources that leave or join an Aggregation shall be completed in accordance with ISO Procedures. The ISO shall approve all valid resource registrations before the resource is allowed to participate in an Aggregation.

Additional rules for ICAP Suppliers changing Aggregations are located in Services Tariff Sec. 5.12.13.3.

4.1.10.4 Aggregation Metering

Each Aggregation must meet the applicable metering standards identified in the ISO

Procedures. Aggregators may choose to have an ISO-authorized Meter Services Entity or the applicable Member System provide Aggregation metering services for wholesale market participation. See Services Tariff § 13.

Real-time telemetry data and revenue-quality meter data shall be submitted for each

Aggregation. Real-time telemetry for Dispatchable DER Aggregations shall consist of three

parts: (i) Energy injections, Energy withdrawals by Withdrawal Eligible Generators, and (ii)

Demand Reductions. Revenue-quality meter data for each Dispatchable DER Aggregation shall consist of three parts: (i) Energy injections; (ii) Energy withdrawals by Withdrawal-Eligible Generators; and (iii) Demand Reductions. Aggregations of other resource types shall submit meter data in accordance with Services Tariff Section 13 and the ISO Procedures.

4.1.10.5 Qualification Requirements for Aggregators

Aggregators must be Customers. Aggregators must (i) comply with the registration requirements set forth in the ISO Procedures; (ii) designate one or more contact persons to receive ISO communications; and (iii) comply with the metering requirements set forth in Section 13 of this Services Tariff, and the ISO Procedures.

4.2 Day-Ahead Markets and Schedules

4.2.1 Day-Ahead Load Forecasts, Bids and Bilateral Schedules

4.2.1.1 General Customer Forecasting and Bidding Requirements

Subject to the two earlier submission deadlines set forth below, by 5 a.m. on the day prior to the Dispatch Day: (i) All LSEs serving Load in the NYCA shall provide the ISO with Load forecasts for the Dispatch Day and the day after the Dispatch Day; and (ii) Customers and Transmission Customers submitting Bids in the Day-Ahead Market shall provide the ISO, consistent with ISO Procedures:

- a. Bids to supply Energy, including Bids to supply Energy in Virtual Transactions;
- b. Bids to supply Ancillary Services;
- c. Requests for Bilateral Transaction schedules;
- d. Bids to purchase Energy, including Bids to purchase Energy in Virtual
 Transactions and Bids to withdraw Energy by Withdrawal-Eligible Generators;
- e. Demand Reduction Bids; and
- f. For Behind-the-Meter Net Generation Resources, the forecasted Host Load for each hour of the Dispatch Day.

By 4:50 a.m. on the day prior to the Dispatch Day, all Customers or Transmission

Customers shall submit Bids for External Transactions at the Proxy Generator Bus associated

with the Cross-Sound Scheduled Line, the Neptune Scheduled Line, the Linden VFT Scheduled

Line, or the HTP Scheduled Line.

By 4:45 a.m. on the day prior to the Dispatch Day, all Customers or Transmission

Customers shall submit Bids that include revised fuel type or fuel price information to the ISO's

Market Information System.

In general, the information provided to the ISO shall include the following:

4.2.1.2 Load Forecasts

The Load forecast shall indicate the predicted level of Load in MW by Point of Withdrawal for each hour.

4.2.1.3 Bids by Suppliers Using the ISO-Committed Flexible, Self-Committed Flexible or ISO-Committed Fixed Bid Modes to Supply Energy and/or Ancillary Services

4.2.1.3.1 General Rules

Day-Ahead Bids by Suppliers using the ISO-Committed Flexible, Self-Committed Flexible or ISO-Committed Fixed bid modes shall identify the Capacity, in MW, available for commitment in the Day-Ahead Market (for every hour of the Dispatch Day) and the price(s) at which the Supplier will voluntarily enter into dispatch commitments. If the Supplier elects to participate in the Day-Ahead Market, and is within a defined electrical boundary, electrically interconnected with, and routinely serves a Host Load (which Host Load does not consist solely of Station Power) at a single PTID, it can only participate in the Day-Ahead Market as a Behind-the-Meter Net Generation Resource. If the Supplier is a Behind-the-Meter Net Generation Resource, the ISO shall only consider price-MW pairs in excess of the forecasted Host Load for the Resource.

A Supplier's Day-Ahead Bids for an Energy Storage Resource to withdraw Energy and to inject Energy shall be submitted as a single, continuous, bid curve representing the Capacity, in

MW, available for commitment in the Day-Ahead Market for each hour of the Dispatch Day, and shall indicate whether the Resource's Energy Level will be ISO- or Self-Managed. An Energy Storage Resource may not change its Energy Level Management election within the Day-Ahead Market evaluation period (*i.e.*, within a single day).

A Supplier's Day-Ahead Market Self-Committed Flexible Bid for a Dispatchable DER

Aggregation may comprise Energy supply and Energy withdrawals if the Dispatchable DER

Aggregation includes at least one Withdrawal-Eligible Generator. When the Self-Committed

Flexible Bid for the Dispatchable DER Aggregation comprises both supply and withdrawals,

each point of the Bid curve shall reflect the net offer, such that the net supply or withdrawal

value is submitted.

If the Supplier using the ISO-Committed Flexible or Self-Committed Flexible bid mode is eligible to provide Regulation Service or Operating Reserves under Rate Schedules 3 and 4 respectively of this ISO Services Tariff, the Supplier's Bid may specify the quantity of Regulation Capacity it is making available and shall specify an emergency response rate that determines the quantity of Operating Reserves that it is capable of providing. Offers to provide Regulation Service and Operating Reserves must comply with the rules set forth in Rate Schedules 3 and 4 of this ISO Services Tariff. If a Supplier that is eligible to provide Operating Reserves does not submit a Day-Ahead Availability Bid for Operating Reserves, its Day-Ahead Bid shall be rejected in its entirety. A Behind-the-Meter Net Generation Resource that is comprised of more than one generating unit or an Aggregation containing at least one generating unit (exclusive of Aggregations containing only ESRs) that is dispatched as a single aggregate unit at a single PTID is not qualified to provide Regulation Service or Spinning Reserves.

Aggregations may only qualify to offer the Ancillary Services that all individual Distributed

Energy Resources in the Aggregation are qualified to provide. A Supplier may resubmit a complete Day-Ahead Bid, provided that the new Bid is timely. See Section 4.2.1.9 for bidding requirements for Demand Side Resources offering Energy in the Day Ahead Market.

Suppliers other than Demand Side Resources entering a Bid into the Day-Ahead Market may also enter Day-Ahead Bids for each of the next nine (9) Dispatch Days. If not subsequently modified or withdrawn, these offers for subsequent Dispatch Days may be used by the ISO as offers from these Suppliers in the Day-Ahead Market for these subsequent Dispatch Days. For Suppliers that are providing Unforced Capacity in the ISO-administered ICAP Market for the month in which the Dispatch Day and the nine-day advance bidding period are encompassed, the ISO may enter the eighth day offer as the Bid for that Supplier's ninth day, if there is, otherwise no ninth-day Bid.

4.2.1.3.2 Bid Parameters

Day-Ahead Bids by Suppliers using the ISO-Committed Flexible, Self-Committed Flexible or ISO-Committed Fixed bid modes may identify-variable Energy price Bids, consisting of up to eleven monotonically increasing, constant cost incremental Energy steps, and other parameters described in ISO Procedures. Day Ahead Bids from Demand Side Resources offering Operating Reserves or Regulation Service shall be ISO Committed Flexible and shall have an Energy Bid price no lower than the Monthly Net Benefit Offer Floor. Day-Ahead offers by Intermittent Power Resources that depend on wind as their fuel shall be ISO-Committed Flexible and shall include a Minimum Generation Bid of zero megawatts and zero costs and a Start-Up Bid of zero cost.

Day-Ahead Bids by ISO-Committed Fixed and ISO-Committed Flexible Generators, other than bids from Intermittent Power Resources that depend on wind as their fuel, shall also

include Minimum Generation Bids and hourly Start-Up Bids. Bids shall specify whether a Supplier is offering to be ISO-Committed Fixed, ISO-Committed Flexible, Self-Committed Fixed, or Self-Committed Flexible.

4.2.1.3.3 Upper Operating Limits, Lower Operating Limits and Response Rates

All Bids to supply Energy and Ancillary Services must specify a UOL_N and a UOL_E for each hour. A Resource's UOL_E may not be lower than its UOL_N. Bids from Withdrawal-Eligible Generators shall also specify the Generator's Lower Operating Limit for each hour.

Bids from Suppliers for Generators and Aggregations supplying Energy and Ancillary Services must specify a normal response rate and may provide up to three normal response rates provided the minimum normal response rate may be no less than one percent (1%) of the Generator's or Aggregation's Operating Capacity per minute. All Bids from Suppliers for Generators and Aggregations supplying Energy and Ancillary Services must also specify an emergency response rate which shall be equal to or greater than the maximum normal response rate of the Generator or Aggregation.

Bids from Suppliers offering Operating Reserves or Regulation Service from Demand Side Resources must specify a normal response rate and an emergency response rate provided that the emergency response rate may not be lower than the normal response rate. For Demand Side Resources the minimum acceptable response rate is one percent (1%) of the quantity of Demand Reduction the Demand Side Resource produces per minute.

4.2.1.3.4 Additional Parameters for Energy Storage Resources

In addition to the parameters that Suppliers submit for Energy Storage Resources because they are Generators, specific parameters may apply to some Bids for Energy Storage Resources.

Consistent with the ISO Procedures, Bids from Suppliers for Energy Storage Resources supplying Energy and Ancillary Services may be required to specify whether the Energy Level will be ISO-Managed or Self-Managed, the Beginning Energy Level, the Energy Storage Resource's Roundtrip Efficiency. An Energy Storage Resource must also specify its Upper and Lower Storage Limits.

The Day-Ahead Schedule for Energy Storage Resources with ISO-Managed Energy Levels will reflect the Resource's Energy Level constraints, including the Beginning Energy Level, the Upper and Lower Storage Limits, and the Resource's Roundtrip Efficiency. An Energy Storage Resource that self-manages its Energy Level is obligated to submit Bids that are consistent with its Energy Level constraints, and the Day-Ahead optimization will not honor the above-identified Energy Level constraints.

4.2.1.4 Offers to Supply Energy from Self-Committed Fixed Generators and Aggregations

Self-Committed Fixed Generators and Aggregations shall provide the ISO with a schedule of their expected Energy output and withdrawals (when applicable) for each hour. Self-Committed Fixed Generators and Aggregations are responsible for ensuring that any hourly changes in output are consistent with their response rates. Self-Committed Fixed Generators and Aggregations shall also submit UOLNS, UOLES and variable Energy Bids for possible use by the ISO in the event that RTD-CAM initiates a maximum generation pickup, as described in Section 4.4.3 of this ISO Services Tariff.

A Supplier's Day-Ahead Market Self-Committed Fixed Bid for a Dispatchable DER

Aggregation may comprise Energy supply and Energy withdrawals if the Dispatchable DER

Aggregation includes at least one Withdrawal-Eligible Generator. When the Self-Committed

Fixed Bid for the Dispatchable DER Aggregation comprises both supply and withdrawals, the Bid shall reflect the net offer, such that a single supply or withdrawal value is submitted.

4.2.1.5 Bids to Supply Energy in Virtual Transactions

Customers submitting Bids to supply Energy in Virtual Transactions shall identify the Energy, in MW, available in the Day-Ahead Market (for every hour of the Dispatch Day) and the price(s) at which the Customer will voluntarily make it available.

4.2.1.6 Bids to Purchase Energy in Virtual Transactions

Customers submitting bids to purchase Energy in Virtual Transactions shall identify the Energy, in MW, to be purchased in the Day-Ahead Market (for every hour of the Dispatch Day) and the price(s) at which the Customer will voluntarily purchase it.

4.2.1.7 Bilateral Transactions

Transmission Customers requesting Bilateral Transaction schedules shall identify hourly Transaction quantities (in MW) by Point of Injection and Point of Withdrawal, minimum run times associated with Firm Point-to-Point Transmission Service, if any, and shall provide other information (as described in ISO Procedures).

4.2.1.8 Bids to Purchase LBMP Energy in the Day-Ahead Market

Each purchaser shall submit Bids indicating the hourly quantity of Energy, in MW, that it will purchase from the Day-Ahead Market for each hour of the following Dispatch Day. These Bids shall indicate the quantities to be purchased by Point of Withdrawal. The Bids may identify prices at which the purchaser will voluntarily enter into the Transaction.

4.2.1.9 Day Ahead Bids from Demand Reduction Providers and DSASP Providers to Supply Energy from Demand Reductions

Demand Reduction Providers and DSASP Providers offering Energy from Demand Side Resources shall submit Bids: (i) identifying the amount of Demand Reduction, in MWs in accordance with Section 4.1.4, that is available for commitment in the Day Ahead Market (for every hour of the dispatch day) and (ii) identifying the prices at which the Demand Reduction Provider or DSASP Provider will voluntarily enter into dispatch commitments to reduce demand; provided, however, the price at which the Demand Reduction Provider or DSASP Providerwill voluntarily enter into dispatch commitments to reduce demand shall be no lower than the Monthly Net Benefit Offer Floor, as determined in accordance with this section. The Bids will identify the minimum period of time that the Demand Reduction Provider or DSASP Provider is willing to reduce demand, however the minimum period may not be less than one hour. The Bid may separately identify the Demand Reduction Provider's Curtailment Initiation Cost. Demand Reduction Bids from Demand Reduction Providers that are not accepted in the Day Ahead Market shall expire at the close of the Day Ahead Market.

The ISO shall perform the Net Benefits Test and post on its web site the Monthly Net Benefit Offer Floor for each month by the 15th of the preceding month in accordance with ISO Procedures. The Net Benefits Test shall establish the threshold price below which the dispatch of Energy from Demand SideLoad reduction Resources is not cost effective. The Net Benefits Test shall consist of the following steps: (1) the ISO shall compile hourly supply curves for the Reference Month; (2) the ISO shall develop the average supply curve for the Study Month by updating the Reference Month supply curves for retirements and new entrants, and adjusting offers for changes in fuel prices; (3) the ISO shall apply an appropriate mathematical formula to smooth the average supply curve; and (4) the ISO shall evaluate the smoothed average supply

Curve to determine the Monthly Net Benefit Floor for the Study Month. The ISO shall apply the Monthly Net Benefit Offer Floor, as so calculated, to Bids submitted by Demand Response Providers for all hours in the Study Month.

The ISO shall promptly post corrections, where necessary, to the Monthly Net Benefit
Offer Floor. Corrections shall only apply to errors in conducting the calculations described
above and/or in posting the properly calculated Monthly Net Benefit Offer Floor. Corrections
shall not include recalculations based on changes in gas prices as set forth above. The ISO shall
not use any correction to the Monthly Net Benefit Offer Floor to determine revised Day Ahead
Market clearing prices for periods prior to the imposition of the correction.

4.2.2 ISO Responsibility to Establish a Statewide Load Forecast

By 8 a.m., or as soon thereafter as is reasonably possible, the ISO will develop and publish its statewide Load forecast on the OASIS. The ISO will use this forecast to perform the SCUC for the Dispatch Day.

4.2.3 Security Constrained Unit Commitment ("SCUC")

Subject to ISO Procedures and Good Utility Practice, the ISO will develop a SCUC schedule over the Dispatch Day using a computer algorithm which simultaneously minimizes the total Bid Production Cost of: (i) supplying power Energy or Demand Reductions to satisfy accepted purchasers' Bids to buy Energy from the Day-Ahead Market; (ii) providing sufficient Ancillary Services to support Energy purchased from the Day-Ahead Market consistent with the Regulation Service Demand curve and Operating Reserve Demand Curves set forth in Rate Schedules 3 and 4 respectively of this ISO Services Tariff; (iii) committing sufficient Capacity to meet the ISO's Load forecast and provide associated Ancillary Services; and (iv) meeting

Bilateral Transaction schedules submitted Day-Ahead excluding schedules of Bilateral Transactions with Trading Hubs as their POWs. The computer algorithm shall consider whether accepting Demand Reduction Bids will reduce the total Bid Production Cost.

The ISO shall compute all NYCA Interface Transfer Capabilities prior to scheduling Transmission Service Day-Ahead. The ISO shall run the SCUC utilizing the computed Transfer Capabilities, submitted Firm Point-to-Point Transmission Service requests, Load forecasts, and submitted Incremental Energy Bids, Decremental Bids and Sink Price Cap Bids.

The schedule will include commitment of sufficient Generators and/or Aggregations Demand Side Resources to provide for the safe and reliable operation of the NYS Power System. SCUC will treat Behind-the-Meter Net Generation Resources, and Energy Storage Resources, and Aggregations as already being committed and available to be scheduled. Pursuant to ISO Procedures, the ISO may schedule any Resource to run above its UOL_N up to the level of its UOL_E. In cases in which the sum of all Bilateral Schedules, excluding Bilateral Schedules for Transactions with Trading Hubs as their POWs, and all Day-Ahead Market purchases to serve Load within the NYCA in the Day-Ahead schedule is less than the ISO's Day-Ahead forecast of Load, the ISO will commit Resources in addition to the Operating Reserves it normally maintains to enable it to respond to contingencies. The purpose of these additional resources is to ensure that sufficient Capacity is available to the ISO in real-time to enable it to meet its Load forecast (including associated Ancillary Services). In considering which additional Resources to schedule to meet the ISO's Load forecast, the ISO will evaluate unscheduled Imports, and will not schedule those Transactions if its evaluation determines the cost of those Transactions would effectively exceed a Bid Price cap in the hours in which the Energy provided by those Transactions is required. In addition to all Reliability Rules, the ISO shall consider the following

information when developing the SCUC schedule: (i) Load forecasts; (ii) Ancillary Service requirements as determined by the ISO given the Regulation Service Demand Curve and Operating Reserve Demand Curves referenced above; (iii) Bilateral Transaction schedules excluding Bilateral Schedules for Transactions with Trading Hubs as their POWs; (iv) price Bids and operating Constraints submitted for by Suppliers Generators or for Demand Side Resources; (v) price Bids for Ancillary Services; (vi) Decremental Bids and Sink Price Cap Bids for External Transactions; and (vii) Bids to purchase or sell Energy from or to the Day-Ahead Market. External Transactions with minimum run times greater than one hour will only be scheduled at the requested Bid for the full minimum run time. External Transactions with identical Bids and minimum run times greater than one hour will not be prorated. The SCUC schedule shall list the hourly injections and withdrawals for: (a) each Customer whose Bid the ISO accepts for the Dispatch Day; and (b) each Bilateral Transaction scheduled Day-Ahead excluding Bilateral Transactions with Trading Hubs as their POWs.

In the development of its SCUC schedule, the ISO may commit and de-commit

Generators and Demand Side Resources, based upon any flexible Bids, including Minimum

Generation Bids, Start-Up Bids, Curtailment Initiation Cost Bids, Energy, and Incremental

Energy Bids and Decremental Bids received by the ISO provided however that: (a) the ISO shall commit zero megawatts of Energy for Demand Side Resources committed to provide Operating

Reserves and Regulation Service; and (b) for Behind-the-Meter Net Generation Resources, the

ISO will consider for dispatch only those segments of the Resource's Incremental Energy Bids above the forecasted Host Load and subject to the Injection Limit.

The ISO will select the least cost mix of Ancillary Services and Energy from Suppliers, including Aggregations containing Demand Side Resources and Customers submitting Virtual Transactions bids. The ISO may substitute higher quality Ancillary Services (*i.e.*, shorter response time) for lower quality Ancillary Services when doing so would result in an overall least bid cost solution. For example, 10-Minute Non-Synchronized Reserve may be substituted for 30-Minute Reserve if doing so would reduce the total bid cost of providing Energy and Ancillary Services.

4.2.3.1 Reliability Forecast for the Dispatch Day

At the request of a Transmission Owner to meet the reliability of its local system, the ISO may incorporate into the ISO's Security Constrained Unit Commitment constraints specified by the Transmission Owner.

A Transmission Owner may request commitment of certain Generators and Aggregations for a Dispatch Day if it determines that certain Generators and/or Aggregations are needed to meet the reliability of its local system. Such request shall be made before the Day-Ahead Market for that Dispatch Day has closed if the Transmission Owner knows of the need to commit certain Generators and/or Aggregations before the Day-Ahead Market close. The ISO may commit one or more Generator(s) and/or Aggregations in the Day-Ahead Market for a Dispatch Day if it determines that the Generator(s) and/or Aggregations are needed to meet NYCA reliability requirements. An Aggregation will be treated as online and available for dispatch if requested by a Transmission Owner.

A Transmission Owner may request commitment of additional Generators <u>and/or</u>

<u>Aggregations</u> for a Dispatch Day following the close of the Day-Ahead Market to meet changed or local system conditions for the Dispatch Day that may cause the Day-Ahead schedules for the

Dispatch Day to be inadequate to ensure the reliability of its local system. The ISO will use SRE to fulfill a Transmission Owner's request for additional units.

All Generator and/or Aggregation commitments made in the Day-Ahead Market pursuant to this Section 4.2.3.1 shall be posted on the ISO website following the close of the Day-Ahead Market, in accordance with ISO procedures. In addition, the ISO shall post on its website a non-binding, advisory notification of a request, or any modifications thereto, made pursuant to this Section 4.2.3.1 in the Day-Ahead Market by a Transmission Owner to commit a Generator and/or Aggregation that is located within a Constrained Area, as defined in Attachment H of this Services Tariff. The advisory notification shall be provided upon receipt of the request and in accordance with ISO procedures.

After the Day-Ahead schedule is published, the ISO shall evaluate any events, including, but not limited to, the loss of significant Generators or transmission facilities that may cause the Day-Ahead schedules to be inadequate to meet the Load or reliability requirements for the Dispatch Day.

In order to meet Load or reliability requirements in response to such changed conditions the ISO may: (i) commit additional Resources, beyond those committed Day-Ahead, using a SRE and considering (a) Bids submitted to the ISO that were not previously accepted but were designated by the bidder as continuing to be available; or (b) new Bids from all Suppliers, including neighboring systems; or (ii) take the following actions: (a) after providing notice, require all Resources to run above their UOLns, up to the level of their UOLes (pursuant to ISO Procedures) and/or raise the UOLns of Capacity Limited Resources and Energy Limited Resources to their UOLe levels, or (b) cancel or reschedule transmission facility maintenance

outages when possible. Actions taken by the ISO in performing supplemental commitments will not change any financial commitments that resulted from the Day-Ahead Market.

4.2.4 Reliability Forecast for the Six Days Following the Dispatch Day

In the SCUC program, system operation shall be optimized based on Bids over the Dispatch Day. However, to preserve system reliability, the ISO must ensure that there will be sufficient resources available to meet forecasted Load and reserve requirements over the seven (7)-day period that begins with the next Dispatch Day. The ISO will perform a Supplemental Resource Evaluation ("SRE") for days two (2) through seven (7) of the commitment cycle. If it is determined that a long start-up time Generator (*i.e.*, a Generator that cannot be scheduled by SCUC to start up in time for the next Dispatch Day) is needed for reliability, the ISO shall accept a Bid from the Generator and the Generator will begin its start-up sequence. During each day of the start-up sequence, the ISO will perform an SRE to determine if long start-up time Generators will still be needed as previously forecasted. If at any time it is determined that the Generator will not be needed as previously forecasted, the ISO shall order the Generator to abort its start-up sequence.

The ISO will commit to long start-up time Generators to preserve reliability. However, the ISO will not commit resources with long start-up times to reduce the cost of meeting Loads that it expects to occur in days following the next Dispatch Day.

A Supplier that bids on behalf of a long start-up time Generator, including one that is committed and whose start is subsequently aborted by the ISO as described in this Section 4.2.4, may be eligible for a Bid Production Cost Guarantee pursuant to the provisions of Section 4.6.6 and Attachment C of this ISO Services Tariff. The costs of such a Bid Production Cost guarantee will be recovered by the ISO under Rate Schedule 1 of the ISO OATT.

The ISO shall perform the SRE as follows: (1) The ISO shall develop a forecast of daily system peak Load for days two (2) through seven (7) in this seven (7)-day period and add the appropriate reserve margin; (2) the ISO shall then forecast its available Generators and Aggregations for the day in question by summing the Operating Capacity for all Generators and Aggregations currently in operation that are available for the commitment cycle, the Operating Capacity of all other Generators and Aggregations capable of starting on subsequent days to be available on the day in question, and an estimate of the net Imports from External Bilateral Transactions; (3) if the forecasted peak Load plus reserves exceeds the ISO's forecast of available Generators and Aggregations for the day in question, then the ISO shall commit additional Generators and Aggregations capable of starting prior to the day in question (e.g., start-up period of two (2) days when looking at day three (3)) to assure system reliability; (4) in choosing among Generators and Aggregations with comparable start-up periods, the ISO shall schedule Generators and Aggregations to minimize Minimum Generation Bid and Start-Up Bid costs of meeting forecasted peak Load plus Ancillary Services consistent with the Reliability Rules; (5) in determining the appropriate reserve margin for days two (2) through seven (7), the ISO will supplement the normal reserve requirements to allow for forced outages of the short start-up period units (e.g., gas turbines) assumed to be operating at maximum output in the unit commitment analysis for reliability. Aggregations will be treated as online and available for dispatch in the Supplemental Resource Evaluation.

Energy Bids are binding for day one (1) only for units in operation or with start-up periods less than one (1) day. Minimum Generation Bids for Generators with start-up periods greater than one (1) day will be binding only for units that are committed by the ISO and only for the first day in which those units could produce Energy given their start-up periods. For

example, Minimum Generation Bids for a Generator with a start-up period of two (2) days would be binding only for day three (3) because, if that unit begins to start up at any time during day one (1), it would begin to produce Energy forty-eight (48) hours later on day three (3). Similarly, the Minimum Generation Bids for a Generator with a start-up period of three (3) days would be binding only for day four (4).

4.2.5 Post the Day-Ahead Schedule

By 11 a.m. on the day prior to the Dispatch Day, the ISO shall close the Day-Ahead scheduling process and post on the Bid/Post System the Day-Ahead schedule for each entity that submits a Bid or Bilateral Transaction schedule. All schedules shall be considered proprietary, with the posting only visible to the appropriate scheduling Customer and Transmission Owners subject to the applicable Code of Conduct (See Attachment F to the ISO OATT). The ISO will post on the OASIS the statewide aggregate resources (Day-Ahead Energy schedules and total operating capability forecast), Day-Ahead scheduled Load, forecast Load for each Load Zone, and the Day-Ahead LBMP prices (including the Congestion Component and the Marginal Losses Component) for each Load Zone in each hour of the upcoming Dispatch Day. The ISO shall conduct the Day-Ahead Settlement based upon the Day-Ahead schedule determined in accordance with this section and Attachment B to this Services Tariff. The ISO will provide the Transmission Owner with the Load forecast (for seven (7) days) as well as the ISO security evaluation data to enable local area reliability to be assessed.

4.2.6 Day-Ahead LBMP Market Settlements

The ISO shall calculate the Day-Ahead LBMPs for each Load Zone and at each

Generator bus and Demand Reduction Transmission Node Bus-as described in Attachment B.

Each Supplier that bids a Generator or Aggregation into the ISO Day-Ahead Market and is scheduled in the SCUC to sell or purchase Energy in the Day-Ahead Market will be settled at the product of: (a) the Day-Ahead hourly LBMP at the applicable Generator bus or Transmission Node; and (b) the hourly Energy schedule. Each Supplier that bids an External Transaction into the Day-Ahead LBMP Market and is scheduled in the SCUC to sell Energy into the Day-Ahead LBMP Market will be settled at the product of (a) the Day-Ahead LBMP at the applicable Proxy Generator Bus and (b) the External Transaction schedule. For each Demand Reduction Provider that bids a Demand Reduction into the Day Ahead Market and is scheduled in SCUC to provide Energy from the Demand Reduction, the LSE providing Energy service to the Demand Side Resource that accounts for the Demand Reduction shall be paid the product of: (a) the Day-Ahead hourly LBMP at the applicable Demand Reduction Bus; and (b) the hourly demand reduction scheduled Day Ahead (in MW). In addition, each Demand Reduction Provider that bids a Demand Reduction into the Day Ahead Market and is scheduled in the SCUC to provide Energy through Demand Reduction shall receive a Demand Reduction Incentive Payment from the ISO equal to the product of: (a) the Day Ahead hourly LBMP at the Demand Reduction bus; and (b) the lesser of the verified actual hourly Demand Reduction or the scheduled hourly Demand Reduction (in MW). Each Customer that bids into the Day-Ahead Market, including each Customer that submits a Bid for a Virtual Transaction, and has a schedule accepted by the ISO to purchase Energy in the Day-Ahead Market will pay the product of: (a) the Day-Ahead hourly Zonal LBMP at each Point of Withdrawal; and (b) the scheduled Energy at each Point of Withdrawal. Each Supplier that bids an External Transaction into the Day-Ahead LBMP Market and is scheduled in the SCUC to buy Energy from the Day-Ahead LBMP Market will pay the product of (a) the Day-Ahead LBMP at the applicable Proxy Generator Bus and (b) the External

Transaction schedule. Each Customer that submits a Virtual Transaction bid into the ISO Day-Ahead Market and has a schedule accepted by the ISO to sell Energy in a Load Zone in the Day-Ahead Market will receive a payment equal to the product of (a) the Day-Ahead hourly zonal LBMP for that Load Zone; and (b) the hourly scheduled Energy for the Customer in that Load Zone. Each Trading Hub Energy Owner who bids a Bilateral Transaction into the Day-Ahead Market with a Trading Hub as its POI and has its schedule accepted by the ISO will pay the product of: (a) the Day-Ahead hourly zonal LBMP for the Load Zone associated with that Trading Hub; and (b) the Bilateral Transaction scheduled MW. Each Trading Hub as its POW and has its schedule accepted by the ISO will be paid the product of: (a) the Day-Ahead hourly zonal LBMP for the Load Zone associated with that Trading Hub; and (b) the Bilateral Transaction scheduled MW.

The ISO shall publish the Day-Ahead Settlement Load Zone LBMPs for each hour in the Dispatch Day.

4.3 In-Day Scheduling Changes

After the Day-Ahead schedule is published, the ISO shall normally grant requests by Capacity Limited Resources and Energy Limited Resources for reductions from Day-Ahead schedules to their UOL_Ns for any hour(s) in which they are scheduled above their UOL_Ns. However, the ISO may schedule such Resources to provide Energy in the Real-Time Market in an amount up to its Day-Ahead schedule during the relevant hour(s) at a price no higher than the relevant Day-Ahead offer price when it is needed to prevent or to address an Emergency.

The ISO will not recall Energy produced by a Generator serving External Load to the extent that the Generator is not providing Installed Capacity (and has not indicated that it wishes to qualify as a provider of Installed Capacity) in the NYCA. The ISO shall take action, including manual intervention, to schedule Export Transactions from Generators that have Available Generating Capacity and that have supplied installed Capacity to entities serving Load located in an External Control Area when the External Control Area issues a notification requiring such Generators to supply Energy, provided however, that any Transaction may be Curtailed in response to the invocation of Transmission Loading Relief procedures by the ISO or by operators of other Control Areas. Energy from non-Installed Capacity providers in New York which is being Supplied outside the NYCA could be purchased by the ISO, pursuant to ISO Procedures, should an emergency exist in the NYCA, provided however that Energy from Generators that have supplied installed Capacity to entities serving Load located in an External Control Area that are responding to a notification by the External Control Area that requires such Generators to supply Energy, may not be purchased by the ISO should a capacity resource emergency exist in the NYCA.

4.4 Real-Time Markets and Schedules

4.4.1 Real-Time Commitment ("RTC")

4.4.1.1 Overview

RTC will make binding unit commitment and de-commitment decisions for the periods beginning fifteen minutes (in the case of Resources that can respond in ten minutes) and thirty minutes (in the case of Resources that can respond in thirty minutes) after the scheduled posting time of each RTC run, will provide advisory commitment information for the remainder of the two and a half hour optimization period, and will produce binding schedules for External Transactions to begin at the start of each quarter hour. RTC will treat a Behind-the-Meter Net Generation Resource, Energy Storage Resources, and Aggregations as already being committed and available to be scheduled. RTC will co-optimize to solve simultaneously for all Load, Operating Reserves and Regulation Service and to minimize the total as-bid production costs over its optimization timeframe. RTC will consider SCUC's Resource commitment for the day, load forecasts that RTC itself will produce each quarter hour, binding transmission constraints, and all Real-Time Bids and Bid parameters submitted pursuant to Section 4.4.1.2 below.

4.4.1.2 Bids and Other Requests

After the Day-Ahead schedule is published and before the close of the Real-Time Scheduling Window for each hour, Customers may submit Real-Time Bids into the Real-Time Market for real-time evaluation by providing all information required to permit real-time evaluation pursuant to ISO Procedures. If the Supplier elects to participate in the Real-Time Market, and is within a defined electrical boundary, electrically interconnected with, and routinely serves a Host Load (which Host Load does not exclusively consist of Station Power) at

a single PTID, it can only participate in the Real-Time Market as a Behind-the-Meter Net Generation Resource. If a Behind-the-Meter Net Generation Resource submits Bids into the Real-Time Market for real-time evaluation, such Bids shall provide the forecasted Host Load for each hour for which Bids are submitted.

An Energy Storage Resource shall indicate in its Real-Time Bids whether its Energy Level will be ISO- or Self-Managed. An Energy Storage Resource that elects to Self-Manage its Energy Level shall be responsible for managing its Energy Level through its Bids. An Energy Storage Resource, including an Energy Storage Resource that received a Day-Ahead Schedule, may change its Energy Level Management election for each operating hour in the Real-Time Market day.

A Supplier's Real-Time Market Self-Committed Flexible Bid for a Dispatchable DER Aggregation may comprise Energy supply and Energy withdrawals if the Dispatchable DER Aggregation includes at least one Withdrawal-Eligible Generator. When the Self-Committed Flexible Bid for the Dispatchable DER Aggregation comprises both supply and withdrawals, each point of the Bid curve shall reflect the net offer, such that the net supply or withdrawal value is submitted.

A Supplier's Real-Time Market Self-Committed Fixed Bid for a Dispatchable DER

Aggregation may comprise Energy supply and Energy withdrawals if the Dispatchable DER

Aggregation includes at least one Withdrawal-Eligible Generator. When the Self-Committed

Fixed Bid for the Dispatchable DER Aggregation comprises both supply and withdrawals, the

Bid shall reflect the net offer, such that a single supply or withdrawal value is submitted.

Provided, however, that if the Monthly Net-Benefit Test Threshold price is less than the LBMP

in a market interval, Demand Side Resources shall not be permitted to net Energy withdrawals of

Withdrawal-Eligible Resources in the Disptachable DER Aggregation, and may be subject to Persistent Over-Withdrawal Charges.

4.4.1.2.1 Real-Time Bids to Supply or Withdraw Energy and Supply Ancillary Services, other than External Transactions

Intermittent Power Resources and Aggregations thereof, that depend on wind as their fuel submitting new or revised offers to supply Energy shall bid as ISO-Committed Flexible and shall submit a Minimum Generation Bid of zero MW and zero cost and a Start-Up Bid at zero cost. Eligible Customers may submit new or revised Bids to supply or withdraw Energy, and to supply Operating Reserves and/or Regulation Service. Customers that submit such Bids may specify different Bid parameters in real-time than they did Day-Ahead. Incremental Energy Bids, for portions of the Capacity of such Resources that were scheduled in the Day-Ahead Market, and/or Start-Up Bids may be submitted by Suppliers bidding Resources using ISO-Committed Fixed, ISO-Committed Flexible, and Self-Committed Flexible bid modes that exceed the Incremental Energy Bids or Start-Up Bids submitted in the Day-Ahead Market or the mitigated Day-Ahead Incremental Energy Bids or Start-Up Bids where appropriate, if not otherwise prohibited pursuant to other provisions of the tariff. Minimum Generation Bids or Regulation Service Bids for any hour in which such Resources received a Day-Ahead Energy schedule or a Regulation Service schedule, as appropriate, may not exceed the Minimum Generation Bids or Regulation Service Bids, as appropriate, submitted for those Resources in the Day-Ahead Market. Additionally, Real-Time Minimum Run Qualified Gas Turbine Customers shall not increase their previously submitted Real-Time Incremental Energy Bids, Minimum Generation Bids, or Start-Up Bids within 135 minutes of the dispatch hour. Bids to supply Energy or Ancillary Services shall be subject to the rules set forth in Section 4.2.1 of this ISO Services Tariff. For

Behind-the-Meter Net Generation Resources, the ISO will consider only those segments of the Resource's Incremental Energy Bids above the forecasted Host Load and subject to the Injection Limit.

Suppliers bidding on behalf of Generators or Aggregations (except Intermittent Power Resource Aggregations) that did not receive a Day-Ahead schedule for a given hour may offer their Generators or Aggregations, for those hours, using the ISO-Committed Flexible, Self-Committed Flexible, Self-Committed Fixed bid mode or, with ISO approval, the ISO-Committed Fixed bid modes in real-time. For Behind-the-Meter Net Generation Resources, the ISO will consider only those segments of the Resource's Incremental Energy Bids above the forecasted Host Load and subject to the Injection Limit. Suppliers bidding on behalf of Demand Side Resources that did not receive a Day Ahead schedule to provide Operating Reserves or Regulation Service for a given hour may offer to provide Operating Reserves or Regulation Service using the ISO Committed Flexible bid mode for that hour in the Real Time Market provided, however, that the Demand Side Resource shall have an Energy price Bid no lower than \$75/MW hour. A Supplier bidding on behalf of a Generator that received a Day-Ahead schedule for a given hour may not change the bidding mode for that Generator for the Real-Time Market for that hour provided, however, that Generators that were scheduled Day-Ahead in Self-Committed Fixed mode may switch, with ISO approval, to ISO-Committed Fixed bidding mode in real-time. Generators that were scheduled Day-Ahead in ISO-Committed Fixed mode will be scheduled as Self-Committed Fixed in the Real-Time Market unless, with ISO approval, they change their bidding mode to ISO-Committed Fixed.

A Generators and Aggregations with a real time physical operating problem that makes it impossible for it to operate in the bidding mode in which it was scheduled Day-Ahead should

notify the ISO. Additionally, if the Host Load of a Behind-the-Meter Net Generation Resource is greater in real-time than was forecasted Day-Ahead such that it cannot meet its Day-Ahead schedule, it must notify the ISO.

Generators <u>and Aggregations and Demand Side Resources</u> may not submit separate Operating Reserves Availability Bids in real-time and will instead automatically be assigned a real-time Operating Reserves Availability Bid of zero for the amount of Operating Reserves they are capable of providing in light of their response rate (as determined under Rate Schedule 4).

4.4.1.2.2 Real-Time Bids Associated with Internal and External Bilateral Transactions

Customers may use Real-Time Bids to seek to modify Bilateral Transactions that were previously scheduled Day-Ahead or propose new Bilateral Transactions, including External Transactions, for economic evaluation by RTC, provided however, that Bilateral Transactions with Trading Hubs as their POWs that were previously scheduled Day-Ahead may not be modified. Bids associated with Internal Bilateral Transactions shall be subject to the rules set forth above in Section 4.2.1.7.

Except as provided in this section, External Transaction Bids may not vary over the course of an hour. Each such Bid must offer to import, export or wheel the same amount of Energy at the same price at each point in time within that hour. At Variably Scheduled Proxy Generator Buses the ISO shall permit the submission of Bids to import or export Energy that vary the amount of Energy, and vary the price, for each quarter hour evaluation period.

The ISO may vary External Transaction Schedules at Proxy Generator Buses that are authorized to schedule transactions on an intra-hour basis if the party submitting the Bid for such a Transaction elects to permit variable scheduling. The ISO may also vary External Transaction

Schedules at CTS Enabled Proxy Generator Buses. External Transaction Bids submitted to import Energy from, or export Energy to Proxy Generator Buses that are authorized to schedule transactions on either an intra-hour or hourly basis shall indicate whether the ISO may vary schedules associated with those Bids within each hour. Transmission Customers scheduling External Bilateral Transactions shall also be subject to the provisions of Section 16, Attachment J of the ISO OATT.

4.4.1.2.3 Self-Commitment Requests

Self-Committed Flexible Resources must provide the ISO with schedules of their expected minimum operating points in quarter hour increments. Self-Committed Fixed Resources must provide their expected actual operating points in quarter hour increments or, with ISO approval, bid as an ISO-Committed Fixed Generator.

4.4.1.2.4 ISO-Committed Fixed

The ability to use the ISO-Committed Fixed bidding mode in the Real-Time Market shall be subject to ISO approval pursuant to procedures, which shall be published by the ISO.

Generators that have exclusively used the Self-Committed Fixed or ISO-Committed Fixed bid modes in the Day-Ahead Market or that do not have the communications systems, operational control mechanisms or hardware to be able to respond to five-minute dispatch basepoints are eligible to bid using the ISO-Committed Fixed bid mode in the Real-Time Market. Real-Time Bids by Generators using the ISO-Committed Fixed bid mode in the Real-Time Market shall provide variable Energy price Bids, consisting of up to eleven monotonically increasing, constant cost incremental Energy steps, Minimum Generation Bids, hourly Start-Up Bids and other information pursuant to ISO Procedures.

RTC shall schedule ISO-Committed Fixed Generators.

4.4.1.3 External Transaction Scheduling

RTC15 will schedule External Transactions on an hourly basis as part of its development of a co-optimized least-bid cost Real-Time Commitment. For External Transactions that are scheduled on a 15 minute basis, the amount of Energy scheduled to be imported, exported or wheeled in association with that External Transaction may change on the quarter hour. All RTC runs will schedule intra-hour External Transactions on a 15 minute basis at Variably Scheduled Proxy Generator Buses. RTC will alert the ISO when it appears that scheduled External Transactions need to be reduced for reliability reasons but will not automatically Curtail them. Curtailment decisions will be made by the ISO, guided by the information that RTC provides, pursuant to the rules established by Attachment B of this ISO Services Tariff and the ISO Procedures. External Bilateral Transaction schedules are also governed by the provisions of Section 16, Attachment J of the OATT.

4.4.1.4 Posting Commitment/De-Commitment and External Transaction Scheduling Decisions

Except as specifically noted in Section 4.4.2, 4.4.3 and 4.4.4 of this ISO Services Tariff, RTC will make all Resource commitment and de-commitment decisions. RTC will make all economic commitment/de-commitment decisions based upon available offers assuming Suppliers internal to the NYCA have a minimum run time of at least 15 minutes, but not longer than one hour; provided however, Real-Time Minimum Run Qualified Gas Turbines shall be assumed to have a two-hour minimum run time. For Behind-the-Meter Net Generation Resources, RTC will consider only those segments of the Resource's Incremental Energy Bids above the forecasted Host Load and subject to the Injection Limit.

RTC will produce advisory commitment information and advisory real-time prices. RTC will make decisions and post information in a series of fifteen-minute "runs" which are described below.

RTC₁₅ will begin at the start of the first hour of the RTC co-optimization period and will post its commitment, de-commitment, and External Transaction scheduling decisions no later than fifteen minutes after the start of that hour. During the RTC₁₅ run, RTC will:

- (i) Commit Resources with 10-minute start-up times that should be synchronized by the time that the results of the next RTC run are posted so that they will be synchronized and running at their scheduled dispatch levels by that time;
- (ii) Commit Resources with 30-minute start-up times that should be synchronized by the time that the results of the RTC run following the next RTC run are posted so that they will be synchronized and running at their scheduled dispatch levels by that time;
- (iii) De-commit Resources that should be disconnected from the network by the time that the results of the next RTC run are posted so that they will be disconnected by that time;
- (iv) Issue advisory commitment and de-commitment guidance for periods more than thirty minutes in the future and advisory dispatch information;
- (v) Schedule economic hourly External Transactions for the next hour;
- (vi) Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at Variably Scheduled Proxy Generator Buses other than a CTS Enabled Proxy Generator Bus;

- (vii) Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at a CTS Enabled Proxy Generator Bus; and
- (viii) Schedule ISO-Committed Fixed Resources.

All subsequent RTC runs in the hour, *i.e.*, RTC₃₀, RTC₄₅, and RTC₀₀ will begin executing at fifteen minutes before their designated posting times (for example, RTC₃₀ will begin in the fifteenth minute of the hour), and will take the following steps:

- (i) Commit Resources with 10-minute start-up times that should be synchronized by the time that the results of the next RTC run are posted so that they will be synchronized and running at that time;
- (ii) Commit Resources with 30-minute start-up times that should be synchronized by the time that the results of the RTC run following the next RTC run are posted so that they will be synchronized and running at that time;
- (iii) De-commit Resources that should be disconnected from the network by the time that the results of the next RTC run are posted so that they will be disconnected at that time;
- (iv) Issue advisory commitment, de-commitment, and dispatching guidance for the period from thirty minutes in the future until the end of the RTC co-optimization period;
- (v) Either reaffirm that the External Transactions scheduled by previous RTC runs should continue to flow in the next hour, or inform the ISO that External Transactions may need to be reduced;

- (vi) Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at Variably Scheduled Proxy Generator Buses other than a CTS Enabled Proxy Generator Bus;
- (vii) Schedule economic 15 minute External Transactions, for the quarter hour for which the results of the next RTC run are posted, at a CTS Enabled ProxyGenerator Bus; and
- (viii) Schedule ISO-Committed Fixed Resources.

4.4.1.5 External Transaction Settlements

Settlements for External Transactions in the LBMP Market are described in Sections
4.2.6 and 4.5 of this ISO Services Tariff. Settlements for External Bilateral Transactions are also described in Section 16, Attachment J and Rate Schedules 7 and 8 of the OATT.

The calculation of Real-Time LBMPs at Proxy Generator Buses and CTS Enabled Interfaces is described in Section 17, Attachment B to this ISO Services Tariff.

4.4.2 Real-Time Dispatch

4.4.2.1 Overview

The Real-Time Dispatch will make dispatching decisions, send Base Point Signals to

Internal Generators and Demand Side Resources Aggregations, produce schedules for intra-hour External

Transactions at Dynamically Scheduled Proxy Generator Buses, calculate Real-Time Market clearing prices for Energy, Operating Reserves, and Real-Time Market Prices for Regulation Service, and establish real-time schedules for those products on a five-minute basis, starting at the beginning of each hour. The Real-Time Dispatch will not make commitment decisions and

will not consider start-up costs in any of its dispatching or pricing decisions, except as specifically provided in Section 4.4.2.4 below. Real-Time Dispatch will review each Energy Storage Resource's Beginning Energy Level in each interval. Real-Time Dispatch will attempt to prevent dispatching a Self-Managed Energy Storage Resource in a manner that would be infeasible based on its Beginning Energy Level. Instead, Real-Time dispatch will reduce the Energy Storage Resource's Upper Operating Limit or increase its Lower Operating Limit, as appropriate, to an achievable value. An Energy Storage Resource's Beginning Energy Level will be used to ensure that Operating Reserves scheduled from the Resource can be sustained for one hour if the Operating Reserves are converted to Energy. Each Real-Time Dispatch run will cooptimize to solve simultaneously for Load, Operating Reserves, and Regulation Service and to minimize the total cost of production over its bid optimization horizon (which may be fifty, fiftyfive, or sixty minutes long depending on where the run falls in the hour.) In addition to producing a binding schedule for the next five minutes, each Real-Time Dispatch run will produce advisory schedules for the remaining four time steps of its bid-optimization horizon (which may be five, ten, or fifteen minutes long depending on where the run falls in the hour). An advisory schedule may become binding in the absence of a subsequent Real-Time Dispatch run. RTD will use the most recent system information and the same set of Bids and constraints that are considered by RTC.

4.4.2.2 External Transaction Scheduling

All RTD runs will schedule External Transactions on a 5 minute basis at Dynamically Scheduled Proxy Generator Buses. For External Transactions that are scheduled on a 5 minute basis, the amount of Energy scheduled to be imported, exported or wheeled in association with

that External Transaction may change every 5 minutes. External Bilateral Transaction Schedules are also governed by the provisions of Attachment J of the OATT.

4.4.2.3 Calculating Real-Time Market LBMPs and Advisory Prices

Node, and for each Load Zone in each RTD cycle, in accordance with the procedures set forth in Attachment B to this ISO Services Tariff. RTD will also calculate and post advisory Real-Time LBMPs for the next four quarter hours in accordance with the procedures set forth in Attachment B.

4.4.2.4 Real-Time Pricing Rules for Scheduling Ten Minute Resources

RTD may commit and dispatch, for pricing purposes, Resources capable of starting and meeting Minimum Generation Levels within ten minutes ("eligible Resources") when necessary to meet load. Eligible Resources committed and dispatched by RTD for pricing purposes may be physically started through normal ISO operating processes. In the RTD cycle in which RTD commits and dispatches an eligible Resource, RTD will consider the Resource's start-up and incremental energy costs and will assume the Resource has a zero downward response rate for purposes of calculating *ex ante* Real-Time LBMPs pursuant to Section 17, Attachment B to this ISO Services Tariff.

4.4.2.5 Converting to Demand Reduction, Special Case Resource Capacity scheduled as Operating Reserves, Regulation or Energy in the Real Time Market

The ISO shall convert to Demand Reductions, in hours in which the ISO requests that

Responsible Interface Parties notify their Special Case Resources to reduce their demand

pursuant to ISO Procedures, any Operating Reserves, Regulation Service or Energy scheduled in

the Day Ahead Market from Demand Side Resources that are also providing Special Case
Resource Capacity. The ISO shall settle the Demand Reduction provided by that portion of the
Special Case Resource Capacity that was scheduled Day Ahead as Operating Reserves,
Regulation Service or Energy as being provided by a Supplier of Operating Reserves, Regulation
Service or Energy as appropriate. The ISO shall settle any remaining Demand Reductions
provided beyond Capacity that was scheduled Day Ahead as Ancillary Services or Energy as
being provided by a Special Case Resource, provided such Demand Reduction is otherwise
payable as a reduction by a Special Case Resource.

Operating Reserves or Regulation Service scheduled Day Ahead and converted to Energy in real time pursuant to this Section 4.4.2.4, will be eligible for a Day Ahead Margin Assurance Payment, pursuant to Attachment J of this ISO Services Tariff.

Special Case Resource Capacity that has been scheduled in the Day Ahead Market to provide Operating Reserves, Regulation Service or Energy and that has been instructed as a Special Case Resource to reduce demand shall be considered, for the purpose of determining a Scarcity Reserve Requirement pursuant to Rate Schedule 4 of this ISO Services Tariff, to be a Special Case Resource.

The ISO shall not accept offers of Operating Reserves or Regulation Service in the Real

Time Market from Demand Side Resources that are also providing Special Case Resource

Capacity for any hour in which the ISO has requested Special Case Resources to reduce demand.

4.4.2.6 Converting to Demand Reduction Curtailment Services Provider

Capacity scheduled as Operating Reserves, Regulation or Energy in the

Real Time Market

The ISO shall convert to Demand Reductions, in hours in which the ISO requests

Demand Reductions from the Emergency Demand Response Program pursuant to ISO

Procedures, any Operating Reserves, Regulation Service or Energy scheduled in the Day Ahead Market by Demand Side Resources that are also providing Curtailment Services Provider Capacity. The ISO shall settle the Demand Reduction provided by that portion of the Curtailment Services Provider Capacity that was scheduled Day Ahead as Operating Reserves, Regulation Service or Energy as being provided by a Supplier of Operating Reserves, Regulation Service or Energy as appropriate. The ISO shall settle Demand Reductions provided beyond Capacity that was scheduled Day Ahead as ancillary services or Energy as being provided by a Curtailment Services Provider.

Operating Reserves or Regulation Service scheduled Day Ahead and converted to Energy in real time pursuant to this Section 4.4.2.5, will be eligible for a Day Ahead Margin Assurance Payment, pursuant to Attachment J of this ISO Services Tariff.

Curtailment Services Provider Capacity that has been scheduled in the Day Ahead

Market as Operating Reserves, Regulation Service or Energy and that has been instructed to
reduce demand shall be considered, for the purpose of determining a Scarcity Reserve

Requirement pursuant to Rate Schedule 4 of this ISO Services Tariff, to be a Emergency

Demand Response Program Resource.

The ISO shall not accept offers of Operating Reserves and Regulation Service in the

Real Time Market from Demand Side Resources that are also providing Curtailment Services

Provider Capacity for any hour in which the ISO has requested participants in the Emergency

Demand Response Program pursuant to ISO Procedures to reduce demand.

4.4.2.7 Post the Real-Time Schedule

Subsequent to the close of the Real-Time Scheduling Window, the ISO shall post the real-time schedule for each entity that submits a Bid or Bilateral Transaction schedule. All

schedules shall be considered proprietary, with the posting only visible to the appropriate scheduling Customer, Transmission Customer and Transmission Owners subject to the applicable Code of Conduct (See Attachment F to the ISO OATT). The ISO will post on the OASIS the real-time Load for each Load Zone, and the Real-Time LBMP prices (including the Congestion Component and the Marginal Losses Component) for each Load Zone for each hour of the Dispatch Day. The ISO shall conduct the real-time settlement based upon the real-time schedule determined in accordance with this Section.

4.4.3 Real-Time Dispatch - Corrective Action Mode

When the ISO needs to respond to system conditions that were not anticipated by RTC or the regular Real-Time Dispatch, *e.g.*, the unexpected loss of a major Generator or Transmission line, it will activate the specialized RTD-CAM program. RTD-CAM runs will be nominally either five or ten minutes long, as is described below. Unlike the Real-Time Dispatch, RTD-CAM will have the ability to commit certain Resources, and schedule intra-hour External Transactions at Dynamically Scheduled Proxy Generator Buses. When RTD-CAM is activated, the ISO will have discretion to implement various measures to restore normal operating conditions. These RTD-CAM measures are described below.

The ISO shall have discretion to determine which specific RTD-CAM mode should be activated in particular situations. In addition, RTD-CAM may require Resources to run above their UOL_{NS}, up to the level of their UOL_{ES} as is described in the ISO Procedures. Self-Committed Fixed Resources will not be expected to move in response to RTD-CAM Base Point Signals except when a maximum generation pickup is activated.

Except as expressly noted in this section, RTD-CAM will dispatch the system in the same manner as the normal Real-Time Dispatch.

4.4.3.1 RTD-CAM Modes

4.4.3.1.1 Reserve Pickup

The ISO will enter this RTD-CAM mode when necessary to re-establish schedules when large area control errors occur. When in this mode, RTD-CAM will send 10-minute Base Point Signals and produce schedules for the next ten minutes. RTD-CAM may also commit, or if necessary de-commit, Resources capable of starting or stopping within 10-minutes. The ISO will continue to optimize for Energy and Operating Reserves, will recognize locational Operating Reserve requirements and Scarcity Reserve Requirements, but will set all Regulation Service schedules to zero. If Resources are committed or de-committed in this RTD-CAM mode the schedules for them will be passed to RTC and the Real-Time Dispatch for their next execution.

The ISO will have discretion to classify a reserve pickup as a "large event" or a "small event." In a small event the ISO will have discretion to reduce Base Point Signals in order to reduce transmission line loadings. The ISO will not have this discretion in large events. The distinction also has significance with respect to a Supplier's eligibility to receive Bid Production Cost guarantee payment in accordance with Section 4.6.6 and Attachment C of this ISO Services Tariff.

4.4.3.1.2 Maximum Generation Pickup

The ISO will enter this RTD-CAM mode when an Emergency makes it necessary to maximize Energy production in one or more location(s), i.e., Long Island, New York City, Southeastern New York, East of Central East and/or NYCA-wide. RTD-CAM will produce schedules directing all Generators and Aggregations located in a targeted location to increase

production at their emergency response rate up to their UOL_E level and to stay at that level until instructed otherwise. Security constraints will be obeyed to the extent possible. The ISO will continue to optimize for Energy and Operating Reserves, will recognize locational Operating Reserve requirements and Scarcity Reserve Requirements, but will set all Regulation Service schedules to zero.

4.4.3.1.3 Base Points ASAP -- No Commitments

The ISO will enter this RTD-CAM mode when changed circumstances make it necessary to issue an updated set of Base Point Signals. Examples of changed circumstances that could necessitate taking this step include correcting line, contingency, or transfer overloads and/or voltage problems caused by unexpected system events. When operating in this mode, RTD-CAM will produce schedules and Base Point Signals for the next five minutes but will only redispatch Generators and Aggregations that are capable of responding within five minutes.

RTD-CAM will not commit or de-commit Resources in this mode.

4.4.3.1.4 Base Points ASAP -- Commit As Needed

This operating mode is identical to Base Points ASAP – No Commitments, except that it also allows the ISO to commit Generators that are capable of starting within 10 minutes when doing so is necessary to respond to changed system conditions.

4.4.3.1.5 Re-Sequencing Mode

When the ISO is ready to de-activate RTD-CAM, it will often need to transition back to normal Real-Time Dispatch operation. In this mode, RTD-CAM will calculate normal five-minute Base Point Signals and establish five minute schedules. Unlike the normal RTD-Dispatch, however, RTD-CAM will only look ahead 10-minutes. RTD-CAM re-sequencing will

terminate as soon as the normal Real-Time Dispatch software is reactivated and is ready to produce Base Point signals for its entire optimization period.

4.4.3.2 Calculating Real-Time LBMPs

When RTD-CAM is activated, RTD shall calculate *ex ante* Real-Time LBMPs at each Generator bus, <u>Transmission Node</u>, and for each Load Zone in accordance with the procedures set forth in Section 17, Attachment B of this ISO Services Tariff.

4.4.4 Identifying the Pricing and Scheduling Rules That Apply to External Transactions

LBMPs will be determined and External Transactions will be scheduled at external Proxy Generator Buses consistent with the table below.

Proxy Generator Bus	PTID	Scheduled Line	Designated Scheduled Line	Non- Competitive	CTS Enabled Proxy Generator Bus		Scheduling Frequencies		
					Requires CTS Bids	Permits CTS Bids	Hourly Scheduled	Variably Scheduled	Dynamically Scheduled (Not Presently Available)
Hydro Quebec									
HQ GEN IMPORT	323601			✓			✓.	✓	
HQ LOAD EXPORT	355639			✓			√	✓	
HQ_GEN_CEDARS_PROXY	323590	Dennison Scheduled Line		V			√		
HQ_LOAD_CEDARS_PROXY	355586	Dennison Scheduled Line		¥			~		
HQ_GEN_WHEEL	23651			✓			✓		
HQ_LOAD_WHEEL	55856			✓			✓		
РЈМ									
PJM_GEN_KEYSTONE	24065					~	√* (See Notes)	√	
PJM_LOAD_KEYSTONE	55857					√	√* (See Notes)	V	
PJM_GEN_NEPTUNE_PROXY	323594	Neptune Scheduled Line	~			✓	√* (See Notes)	~	
PJM_LOAD_NEPTUNE_PROXY	355615	Neptune Scheduled Line	V			✓	√* (See Notes)	~	
PJM_GEN_VFT_PROXY	323633	Linden VFT Scheduled Line	√			√	√* (See Notes)	~	
PJM_LOAD_VFT_PROXY	355723	Linden VFT Scheduled Line	~			√	√* (See Notes)	·	
PJM_HTP_GEN	323702	HTP Scheduled Line	√			~	√* (See Notes)	~	

Proxy Generator Bus	PTID	Scheduled Line	Designated Scheduled Line	Non- Competitive	CTS Enabled Proxy Generator Bus		Scheduling Frequencies		
					Requires CTS Bids	Permits CTS Bids	Hourly Scheduled	Variably Scheduled	Dynamically Scheduled (Not Presently Available)
HUDSONTP_345KV_HTP_LOAD	355839	HTP Scheduled Line	~			~	√* (See Notes)	√	
ISO New England								1.	
N.EGEN_SANDY_POND	24062				~		√** (See Notes)	√	
NE_LOAD_SANDY_PD	55858				~		√** (See Notes)	~	
NPX_GEN_CSC	323557	Cross Sound Scheduled Line	√				V		
NPX_LOAD_CSC	355535	Cross Sound Scheduled Line	√				~		
NPX_GEN_1385_PROXY	323591	Northport Norwalk Scheduled Line					√		
NPX_LOAD_1385_PROXY	355589	Northport Norwalk Scheduled Line					✓		
Ontario									
O.H. GEN BRUCE	24063						✓		
OH LOAD BRUCE	55859				Ì		✓.		

Notes:

^{*} At specifically identified Proxy Generator Buses ("* See Notes"), only Wheels Through (the NYCA) are scheduled on an hourly basis.

^{**} At specifically identified Proxy Generator Buses ("** See Notes"), only wheels through the NYCA or a neighboring Control Area are scheduled on an hourly basis.

Pricing rules for Proxy Generator Buses are set forth in Section 17 of the Services Tariff.

The ISO may offer a more frequent scheduling option at a Proxy Generator Bus identified on the table. The ISO shall inform its Market Participants of the availability of such an option by providing notice at least two weeks in advance of the implementation of any such change. At the same time, the ISO shall update the above table to reflect the change in scheduling options by submitting a compliance filing in FERC Docket No. ER11-2547. Unless FERC acts on the ISO's compliance filing, the ISO shall effectuate the change in scheduling capability on the date it proposed in its compliance filing. The addition of new Proxy Generator Buses to the table, or changing the pricing rules that apply at a Proxy Generator Bus, may not be accomplished by submitting a compliance filing in Docket No. ER11-2547. The ISO may revert to establishing hourly Import and Export schedules using all available External Transaction Bids at a Proxy Generator Bus that is identified as a Dynamically or Variably Scheduled Proxy Generator Bus when the ISO or a neighboring Balancing Authority is not able to implement schedules as expected, or when necessary to ensure or preserve system reliability. When it reverts to hourly Import and Export schedules at a Dynamically or Variably Scheduled Proxy Generator Bus, the ISO shall apply the pricing rules for a corresponding Proxy Generator Bus that is not Dynamically Scheduled or Variably Scheduled. The ISO may cease evaluating CTS Interface Bids at CTS Enabled Proxy Generator Buses when the ISO or a neighboring Balancing Authority is not able to implement schedules as expected, or when necessary to ensure or preserve system reliability.

4.5 Real-Time Market Settlements

Transmission Customers and Customers taking service under this ISO Services Tariff or the ISO OATT, shall be subject to the Real-Time Market Settlement. All withdrawals, injections and injections Demand Reductions not scheduled on a Day-Ahead basis, including Real-Time deviations from any Day-Ahead External Transaction schedules, shall be subject to the Real-Time Market Settlement. Transmission Customers not taking service under this Tariff shall be subject to balancing charges as provided for under the ISO OATT. Settlements with Suppliers scheduling service from External Suppliers to the LBMP Market or to External Loads from the LBMP Market will be based upon scheduled withdrawals or injections. Real-Time Market Settlements for injections by Resources supplying Regulation Service or Operating Reserves shall follow the rules which are described in Rate Schedules 15.3 and 15.4, respectively.

For the purposes of this section, the scheduled output of each of the following Generators in each RTD interval in which it has offered Energy shall retroactively be set equal to its actual output in that RTD interval:

(i) Generators, except for the Generator of a Behind-the-Meter Net Generation

Resource and Generators in an Aggregation, providing Energy under contracts

executed and effective on or before November 18, 1999 (including PURPA

contracts) in which the power purchaser does not control the operation of the

supply source but would be responsible for penalties for being off-schedule, with

the exception of Generators under must-take PURPA contracts executed and

effective on or before November 18, 1999 who have not provided telemetering to

their local TO and historically have not been eligible to participate in the NYPP

- market, which will continue to be treated as TO Load modifiers under the ISO-administered markets;
- (ii) Existing topping turbine Generators and extraction turbine Generators producing electric Energy resulting from the supply of steam to the district steam system located in New York City (LBMP Zone J) in operation on or before November 18, 1999 and/or topping or extraction turbine Generators utilized in replacing or repowering existing steam supplies from such units (in accordance with good engineering and economic design) that cannot follow schedules, up to a maximum total of 523 MW of such units.

This procedure shall not apply to Behind-the-Meter Net Generation Resources.

<u>Aggregations</u>, or a Generator for those hours it has used the ISO-Committed Flexible or Self-Committed Flexible bid mode.

In Sections 4.5.1, 4.5.2, 4.5.3, 4.5.4, 4.5.5 and 4.5.6 of this Tariff, references to "scheduled" Energy injections and withdrawals shall encompass injections, including Demand Reductions, and withdrawals that are scheduled Day-Ahead, as well as injections, and withdrawals that occur in connection with real-time Bilateral Transactions. In Sections 4.5.1, 4.5.3, 4.5.4 and 4.5.6 of this Tariff, references to Energy Withdrawals and Energy Injections shall not include Energy Withdrawals or Energy Injections in Virtual Transactions, or Energy Withdrawals or Energy Injections at Trading Hubs. Generators, including Limited Energy Storage Resources, and Aggregations, that are providing Regulation Service shall not be subject to the real-time Energy market settlement provisions set forth in this Section, but shall instead be subject to the Energy settlement rules set forth in Rate Schedule 15.3 of this ISO Services Tariff.

4.5.1 Settlement When Actual Energy Withdrawals Exceed Scheduled Energy Withdrawals Other Than Scheduled or Actual Withdrawals in Virtual Transactions

When the Actual Energy Withdrawals by a Customer over an RTD interval exceed the Energy withdrawals scheduled over that RTD interval, the ISO shall charge the Real-Time LBMP for Energy equal to the product of: (a) the Real-Time LBMP calculated in that RTD interval for each applicable Load Zone; and (b) the difference between the Actual Energy Withdrawals and the scheduled Energy withdrawals at that Load Zone.

If the Generator of a Behind-the-Meter Net Generation Resource is not able to serve the Resource's Host Load at any time, any resulting Actual Energy Withdrawals that serve the Host Load will be charged to the Load Serving Entity responsible for serving the Behind-the-Meter Net Generation Resource.

4.5.2 Settlement for Customers Scheduled To Sell Energy in Virtual Transactions in Load Zones

The Actual Energy Injection in a Load Zone by a Customer scheduled Day-Ahead to sell Energy in a Virtual Transaction is zero and the Customer shall pay a charge for the Energy imbalance equal to the product of: (a) the Real-Time LBMP calculated in that hour for the applicable Load Zone; and (b) the scheduled Day-Ahead Energy Injection of the Customer for that Hour in that Load Zone.

4.5.3 Settlement When Actual Energy Injections are Less Than Scheduled Energy Injections or Actual Demand Reductions are Less Than Scheduled Demand Reductions

4.5.3.1 General Rule

When the Actual Energy Injections by a Supplier over an RTD interval are less than the Energy injections scheduled Day-Ahead over that RTD interval, the Supplier shall pay a charge for the Energy imbalance equal to the product of: (a) the Real-Time LBMP calculated in that RTD interval for the applicable Generator bus; and (b) the difference between the scheduled Day-Ahead Energy injections and the lesser of: (i) the Actual Energy Injections at that bus; or (ii) the Supplier's Real-Time Scheduled Energy Injection plus any Compensable Overgeneration. If the Energy injections by a Supplier over an RTD interval are less than the Energy injections scheduled for the Supplier Day-Ahead, and if the Supplier reduced its Energy injections in response to instructions by the ISO or a Transmission Owner that were issued in order to maintain a secure and reliable dispatch, the Supplier may be entitled to a Day-Ahead Margin Assurance Payment, pursuant to Attachment J of this ISO Services Tariff.

4.5.3.2 Failed Transactions

If an Energy injection scheduled by RTC at a Proxy Generator Bus fails in the ISO's checkout process, the Supplier or Transmission Customer that was scheduled to make the injection will pay the Energy imbalance charge described above in Section 4.5.3.1. In addition, if the checkout failure occurred for reasons within the Supplier's or Transmission Customer's control it will be required to pay the "Financial Impact Charge" described below. The ISO's Market Mitigation and Analysis Department will determine whether the Transaction associated with an injection failed for reasons within a Supplier's or Transmission Customer's control.

If an Energy injection at a Proxy Generator Bus is determined to have failed for reasons within a Supplier's or Transmission Customer's control, the Financial Impact Charge will equal:

(i) the difference computed by subtracting the actual real-time Energy injection from the amount of the Import scheduled by RTC; multiplied by (ii) the greater of the Real-Time Market Congestion Component of the LBMP in the relevant interval, or zero.

If a Wheel Through fails for reasons within a Supplier's or Transmission Customer's control, the Financial Impact Charge will equal the sum of the Financial Impact Charge described in this section and the Financial Impact Charge described below in Section 4.5.4.2.

All Financial Impact Charges collected by the ISO shall be used to reduce the charges assessed under Rate Schedule 1 of this ISO Services Tariff. In the event that the Energy injections for an Import scheduled by RTC or RTD, at a Proxy Generator Bus is Curtailed at the request of the ISO, and (i) the real-time Energy Profile MW is equal to or greater than the Day-Ahead Energy Schedule for that interval, and (ii) the real-time Decremental Bid is less than or equal to the default real-time Decremental Bid amount as established by ISO procedures, then the Supplier or Transmission Customer that is subjected to the Curtailment, in addition to the charge for Energy Imbalance, shall be eligible to receive an Import Curtailment Guarantee Payment for its curtailed Import pursuant to Attachment J of this ISO Services Tariff.

4.5.3.3 Capacity Limited Resources and Energy Limited Resources

For any hour in which: (i) a Capacity Limited Resource is scheduled to supply Energy,

Operating Reserves, or Regulation Service in the Day-Ahead Market; (ii) the sum of its
schedules to provide these services exceeds its bid-in upper operating limit; (iii) the Capacity

Limited Resource requests a reduction for Capacity limitation reasons; and (iv) the ISO reduces
the Capacity Limited Resource's upper operating limit to a level equal to, or greater than, its bid-

in upper operating limit; the imbalance charge for Energy, Operating Reserve Service or Regulation Service imposed on that Capacity Limited Resource for that hour for its Day-Ahead Market obligations above its Capacity limited upper operating limit shall be equal to the product of: (a) the Real-Time price for Energy, Operating Reserve Service and Regulation Capacity; and (b) the Capacity Limited Resource's Day-Ahead schedule for each of these services minus the amount of these services that it has an obligation to supply pursuant to its ISO-approved schedule. When a Capacity Limited Resource's Day-Ahead obligation above its Capacity limited upper operating limit is balanced as described above, any real-time variation from its obligation pursuant to its Capacity limited schedules shall be settled pursuant to the methodology set forth in Section 4.5.3.1.

For any day in which: (i) an Energy Limited Resource is scheduled to supply Energy,
Operating Reserves or Regulation Service in the Day-Ahead Market; (ii) the sum of its schedules
to provide these services exceeds its bid-in Normal Upper Operating Limit; (iii) the Energy
Limited Resource requests a reduction for Energy limitation reasons; and (iv) the ISO reduces
the Energy Limited Resource's Day-Ahead Emergency Upper Operating Limit to a limit no
lower than the Normal Upper Operating Limit; the Resource may be eligible to receive a DayAhead Margin Assurance Payment pursuant to Attachment J of this ISO Services Tariff.

4.5.3.4 Demand Reductions

When the verified actual Demand Reduction over an hour from a Demand Reduction

Provider that is also the LSE providing Energy service to the Demand Side Resource(s) that

produced the reduction is less than the Demand Reduction scheduled for that hour, that LSE shall

pay a Demand Reduction imbalance charge consisting of the product of: (a) the greater of the

Day Ahead LBMP or the Real Time LBMP for that hour and (b) the difference between the scheduled Demand Reduction and the verified actual Demand Reduction in that hour.

When the verified actual Demand Reduction over an hour from a Demand Reduction
Provider that is not the LSE providing Energy service to the Demand Side Resource(s) that
produced the reduction is less than the Demand Reduction scheduled over that hour, then (1) the
LSE providing Energy service to the Demand Reduction Provider's Demand Side Resource(s)
shall pay a Demand Reduction imbalance charge equal to the product of (a) the Day Ahead
LBMP calculated for that hour for the applicable Load bus and (b) the difference between the
scheduled Demand Reduction and the verified actual Demand Reduction at that bus in that hour,
and (2) the Demand Reduction Provider will pay an amount equal to (a) the product of (i) the
higher of the Day Ahead LBMP or the Real Time LBMP calculated for that hour for the
applicable Load bus, and (ii) the difference between the scheduled Demand Reduction and the
verified actual Demand Reduction at that bus in that hour, and (b) minus the amount paid by the
LSE providing service to the Demand Reduction Provider's Demand Side Resource(s) under (1),
above.

4.5.4 Settlement When Actual Energy Withdrawals are Less Than Scheduled Energy Withdrawals Other Than Actual or Scheduled Withdrawals in Virtual Transactions

4.5.4.1 General Rules

When a Customer's Actual Energy Withdrawals over an RTD interval are less than its Energy withdrawals scheduled Day-Ahead over that RTD interval, the Customer shall be paid the product of: (a) the Real-Time LBMP calculated in that RTD interval for each applicable Load Zone; and (b) the difference between the scheduled Energy withdrawals and the Actual

Energy Withdrawals in that Load Zone. In addition, a Customer LSE providing Energy service to a Demand Reduction Provider's Demand Side Resource in a Load Zone shall be charged the product of: (a) the Real Time hourly LBMP for that Load Zone; and (b) the actual Demand Reduction at the Demand Reduction Bus in that Load Zone.

4.5.4.2 Failed Transactions

If an Energy withdrawal at a Proxy Generator Bus scheduled by RTC fails in the ISO's checkout process, the Supplier or Transmission Customer that was scheduled to make the withdrawal will pay or be paid the energy imbalance charge described above in Section 4.5.4.1. In addition, if the checkout failure occurred for the reasons within the Supplier's or Transmission Customer's control it will be required to pay the "Financial Impact Charge" described below. The ISO's Market Mitigation and Analysis Department will determine whether the Transaction associated with a withdrawal failed for reasons within a Supplier's or Transmission Customer's control.

If an Energy withdrawal at a Proxy Generator Bus is determined to have failed for reasons within a Supplier's or Transmission Customer's control, the Financial Impact Charge will equal: (i) the difference computed by subtracting the actual real-time Energy withdrawal from the amount of the Export scheduled by RTC; multiplied by (ii) the product of negative one and the lesser of the Real-Time Market Congestion Component of the LBMP in the relevant interval, or zero.

If a Wheel Through fails for reasons within a Supplier's or Transmission Customer's control, the Financial Impact Charge will equal the sum of the Financial Impact Charge described in this subsection and the Financial Impact Charge described above in Section 4.5.3.2.

All Financial Impact Charges collected by the ISO shall be used to reduce the charges assessed under Rate Schedule 15.1 of this ISO Services Tariff.

4.5.5 Settlement for Customers Scheduled To Purchase Energy in Virtual Transactions in Load Zones

The Actual Energy Withdrawal in a Load Zone by a Customer scheduled Day-Ahead to purchase Energy in a Virtual Transaction is zero and the Customer shall be paid the product of:

(1) the Real-Time LBMP calculated in that hour for the applicable Load Zone; and (b) the scheduled Day-Ahead Energy Withdrawal of the Customer for that Hour in that Load Zone.

4.5.6 Settlement When Actual Energy Injections Exceed Scheduled Energy Injections

When Actual Energy Injections from a Generator over an RTD interval exceed the Energy injections scheduled Day-Ahead over the RTD interval the Supplier shall be paid the product of: (1) the Real-Time LBMP calculated in that RTD interval for the applicable Generator bus and (2) the difference between the lesser of (i) the Supplier's Actual Energy Injection or (ii) its Real-Time Scheduled Energy Injection for that RTD interval, plus any Compensable Overgeneration and the Supplier's Day-Ahead scheduled Energy injection over the RTD interval, unless the payment that the Supplier would receive for such injections would be negative (i.e., unless the LBMP calculated in that RTD interval at the applicable Generator's bus is negative) in which case the Supplier shall be paid the product of: (1) the Real-Time LBMP calculated in that RTD interval for the applicable Generator bus and (2) the difference between the Supplier's Actual Energy Injection for that RTD interval and the Supplier's Day-Ahead scheduled Energy injection over that RTD interval. A Generator that is not following Base Point Signals shall not be compensated for Energy in excess of its Real-Time Scheduled Energy

Injection if its applicable upper operating limit has been reduced below its bid-in upper operating limit by the ISO in order to reconcile the ISO's dispatch with the Generator's actual output, or to address reliability concerns. Suppliers shall not be compensated for Energy in excess of their Real-Time Scheduled Energy Injections, except: (i) for Compensable Overgeneration; (ii) when the ISO initiates a large event reserve pickup or a maximum generation pickup under RTD-CAM; or (iii) when a Transmission Owner initiates a reserve pickup in accordance with a Reliability Rule, including a Local Reliability Rule. When there is no large event reserve pickup or maximum generation pickup, or when there is such an instruction but a Supplier is not located in the area affected by the maximum generation pickup, that Supplier shall not be compensated for Energy in excess of its Real-Time Scheduled Energy Injection plus any Compensable Overgeneration. When there is a reserve pickup, or when there is a maximum generation pickup and a Supplier is located in the area affected by it, and the Supplier was either scheduled to operate in RTD or subsequently was directed to operate by the ISO, that Supplier shall be paid based on the product of: (1) the Real-Time LBMP calculated in that RTD Interval for the applicable Generator bus; and (2) the Actual Energy Injection minus the Energy injection scheduled Day-Ahead.

4.5.7 Settlement for Trading Hub Energy Owner when POI is a Trading Hub

Each Trading Hub Energy Owner who bids a Bilateral Transaction into the Real-Time Market with a Trading Hub as its POI and has its schedule accepted by the ISO will pay the product of: (a) the hourly integrated Real-Time LBMP for the Load Zone associated with that Trading Hub; and (b) the Bilateral Transaction scheduled MW.

4.5.8 Settlement for Trading Hub Energy Owner when POW is a Trading Hub

Each Trading Hub Energy Owner who bids a Bilateral Transaction into the Real-Time Market with a Trading Hub as its POW and has its schedule accepted by the ISO will be paid the product of: (a) the hourly integrated Real-Time LBMP for the Load Zone associated with that Trading Hub; and (b) the Bilateral Transaction scheduled MW.

4.5.9 Balancing and Settlement for a DER Aggregation

4.5.9.1 Monthly Net Benefits Test

The ISO shall perform the Net Benefits Test and post on its web site the Monthly Net Benefit Threshold for each month by the 15th of the preceding month in accordance with ISO Procedures. The Net Benefits Test shall establish the threshold price below which the dispatch of Energy from Demand Side Resources is not cost-effective. The Net Benefits Test shall consist of the following steps: (1) the ISO shall compile hourly supply curves for the Reference Month; (2) the ISO shall develop the average supply curve for the Study Month by updating the Reference Month supply curves for retirements and new entrants, and adjusting offers for changes in fuel prices; (3) the ISO shall apply an appropriate mathematical formula to smooth the average supply curve; and (4) the ISO shall evaluate the smoothed average supply curve to determine the Monthly Net Benefit Floor for the Study Month.

The ISO shall promptly post corrections, where necessary, to the Monthly Net Benefit

Threshold. Corrections shall only apply to errors in conducting the calculations described above

and/or in posting the properly calculated Monthly Net Benefit Threshold. Corrections shall not
include recalculations based on changes in gas prices.

4.5.9.2 Balancing of Day-Ahead Position

Dispatchable DER Aggregations that receive a Day-Ahead Market Energy schedule shall be subject to the Energy balancing rule in this Section. When a Dispatchable DER Aggregation receives a Day-Ahead schedule, the ISO shall automatically initiate a buy back, on behalf of the DER Aggregation, the Energy scheduled in the Day-Ahead Market. The Dispatchable DER Aggregation shall pay a charge for the Energy equal to the product of: (a) the Real-Time LBMP calculated in that RTD interval for the applicable Transmission Node; and (b) the amount of Energy scheduled Day-Ahead.

4.5.9.3 Settlement for Actual Energy Injections

When a Dispatchable DER Aggregation receives a Real-Time Market schedule to supply Energy, it shall be paid the product of: (a) the Real-Time LBMP calculated in that RTD interval for the applicable Transmission Node; and (b) the lesser of (1) the Dispatchable DER Aggregation's Actual Energy Injections, and (2) the Dispatchable DER Aggregation's Real-Time Energy Schedule plus any Compensable Overgeneration.

4.5.9.4 Settlement for Actual Energy Withdrawals

When a Dispatchable DER Aggregation receives a Real-Time Market schedule to withdraw Energy, it shall pay the product of: (a) the Real-Time LBMP calculated in that RTD interval for the applicable Transmission Node; and (b) the greater of (1) the Dispatchable DER Aggregation's Actual Energy Withdrawals, and (2) the Dispatchable DER Aggregation's Real-Time Scheduled Energy Withdrawals less any Allowable Under-Withdrawals.

4.5.9.5 Settlement for Real-Time Demand Reductions

When a Dispatchable DER Aggregation receives a Real-Time Market schedule to supply

Energy, and the Real-Time LBMP calculated in that RTD interval for the applicable

Transmission Node exceeds the Monthly Net Benefit Threshold price, it shall be paid the product

of: (a) the Real-Time LBMP calculated in that RTD interval for the applicable Transmission

Node; and (b) the lesser of (1) the Dispatchable DER Aggregation's Actual Demand Reductions,
and (2) the Dispatchable DER Aggregation's Real-Time Schedule minus its Actual Energy

Injections, not to go below zero.

A Dispatchable DER Aggregation may offer into the Real-Time Market below the Monthly Net Benefit Threshold however, when a Dispatchable DER Aggregation receives a Real-Time Market schedule to supply Energy, and the Real-Time LBMP calculated in that RTD interval for the applicable Transmission Node is less than the Monthly Net Benefit Threshold price, Demand Reductions by the Dispatchable DER Aggregation shall not be eligible for Energy payments or any make-whole payments otherwise available under this Services Tariff, provided however, that if the Dispatchable DER Aggregation is dispatched by the ISO or Transmission Owner for reliability, it shall be eligible for Energy and make-whole payments.

4.5.910 Performance Tracking

The ISO shall use a Performance Tracking System to compute the difference between the Energy actually supplied and the Energy scheduled by the ISO for all Suppliers located within the NYCA and shall use it to measure compliance with criteria associated with the provision of Energy and Ancillary Services as set forth in the ISO Procedures. The Performance Tracking System shall also be used to report metrics for Loads.

4.6 Payments

4.6.1 Payments to Suppliers of Regulation Service

Suppliers of Regulation Service shall receive a payment that is calculated pursuant to Rate Schedule 15.3 of this ISO Services Tariff

4.6.2 Payments to Suppliers of Reactive Supply and Voltage Support Service ("Voltage Support Service")

Suppliers of Voltage Support Service shall receive a Voltage Support Service payment in accordance with the criteria and formula in Rate Schedule 15.2.

4.6.3 Payments to Suppliers for Operating Reserves

Suppliers of each type of Operating Reserve will receive payments for each MW of Operating Reserve that they provide, as requested by the ISO, pursuant to Rate Schedule 15.4.

Additionally, Generators and Aggregations, except Aggregations supplying Demand

Reductions, providing Operating Reserves shall receive a payment for Energy injections when
the ISO requests Energy under a reserve activation. The Energy payment shall be calculated as
the product of: (a) the Energy provided; and (b) the Real-Time Market LBMP.

Aggregations supplying Operating Reserves from Demand Reductions by Demand Side
Resources shall receive a payment for Energy when the ISO requests Energy under a reserve
activation and when the LBMP for the market interval is greater than the Monthly Net Benefits
Test Threshold price. When both conditions are met, the Energy payment shall be calculated as
the product of: (a) the Energy provided; and (b) the Real-Time Market LBMP.

4.6.4 Payments to Generators for Black Start Capability

Black Start Capability providers shall receive a payment for Black Start Capability as set forth in Rate Schedule 15.5.

4.6.5 Day-Ahead Margin Assurance Payments

A Supplier that is scheduled in the Day-Ahead Market to provide Energy, Regulation Service, or Operating Reserves may be eligible to receive a Day-Ahead Margin Assurance Payment pursuant to Attachment J of this ISO Services Tariff.

4.6.6 Bid Production Cost Guarantee Payments

4.6.6.1 Day-Ahead BPCG for Generators

The ISO shall determine if a Supplier eligible under Section 18.2.1 of Attachment C of this ISO Services Tariff for a Day-Ahead Bid Production Cost guarantee payment will not recover its Day-Ahead Regulation Capacity Bid, Operating Reserves Bid, or its Minimum Generation Bid, Start-Up Bid, and Incremental Energy Bid for Energy scheduled in the Day-Ahead Market, including Energy provided by the capacity scheduled for Regulation Service, through Day-Ahead LBMP revenue, Day-Ahead Imputed LBMP Revenue and net Day-Ahead Ancillary Services revenues for Voltage Support Service, Regulation Service, and synchronized Operating Reserves. Such determination shall be made for an entire Day-Ahead Market day, and such determination shall be made separately for each Generator. On the basis of such determination (and subject to any mitigation that may apply) the ISO shall pay a Day-Ahead BPCG to the Supplier pursuant to Section 18.2 of Attachment C to this ISO Services Tariff.

4.6.6.2 Day-Ahead BPCG for Imports

The ISO shall determine if a Supplier supplying an Import and eligible under Section 18.3.1 of Attachment C of this ISO Services Tariff for a Day-Ahead Bid Production Cost guarantee payment will not recover its Day-Ahead Decremental Bid through Day-Ahead LBMP revenue and Day-Ahead Imputed LBMP Revenue. Such determination shall be made for an entire Day-Ahead Market day and such determination shall be made separately for each Import transaction. On the basis of such determination, the ISO shall pay a Day-Ahead Bid Production Cost guarantee payment to the Supplier pursuant to Section 18.3 of Attachment C of this ISO Services Tariff.

4.6.6.3 Real-Time BPCG for Generators in RTD Intervals Other than Supplemental Event Intervals

The ISO shall determine if a Supplier eligible under Section 18.4.1 of Attachment C of this ISO Services Tariff for a real-time Bid Production Cost guarantee payment will not recover its real-time Regulation Capacity Bid, Regulation Movement Bid, Operating Reserves Bid, or its Minimum Generation Bid, Start-Up Bid, and Incremental Energy Bid for Energy that was not scheduled in the Day-Ahead Market, including Energy provided by the capacity scheduled for Regulation Service, through real-time LBMP revenue, real-time Imputed LBMP Revenue and net real-time Ancillary Services revenues for Voltage Support Service, Regulation Service, and synchronized Operating Reserves. Such determination shall be made for an entire Dispatch Day (except for Supplemental Event Intervals). Such determination shall be made separately for each Generator. On the basis of such determination, and subject to any mitigation that may apply, the ISO shall pay a real-time Bid Production Cost guarantee payment to the

Supplier pursuant to Section 18.4 of Attachment C to this ISO Services Tariff and, as applicable, Section 15.3.

Suppliers bidding on behalf of Resources that were not committed by the ISO to operate in a given Dispatch Day, but which continue to operate due to minimum run time Constraints, shall not receive such a supplemental payment.

4.6.6.4 BPCG for Generators for Supplemental Event Intervals

The ISO shall determine if a Supplier eligible under Section 18.5.1 of Attachment C of this ISO Services Tariff for a Bid Production Cost guarantee payment for a Supplemental Event Interval will not recover its real-time Regulation Capacity Bid, Regulation Movement Bid, Operating Reserves Bid, or its Minimum Generation Bid and Incremental Energy Bid for Energy that was not scheduled Day-Ahead, including Energy provided by the capacity scheduled for Regulation Service, through real-time LBMP revenue, real-time Imputed LBMP Revenue and net real-time Ancillary Services revenues for Voltage Support Service, Regulation Service, and Operating Reserves in that interval. Such determination shall be made separately for each Supplemental Event Interval, and such determination, the ISO shall pay a Bid Production Cost guarantee payment to the Supplier for a Supplemental Event Interval pursuant to Section 18.5 of Attachment C of this ISO Services Tariff.

4.6.6.5 Real-Time BPCG for External Transactions

External Transactions are not eligible to receive Bid Production Cost guarantee payments in the Real-Time Market pursuant to Section 18.6 of Attachment C of this ISO Services Tariff.

4.6.6.6 BPCG for Long Start-Up Time Generators Whose Starts Are Aborted by the ISO Prior to their Dispatch

The ISO shall pay a Supplier eligible under Section 18.7.1 of Attachment C of this ISO Services Tariff for a Bid Production Cost guarantee payment for a long start-up time Generator (i.e., a Generator that cannot be scheduled by SCUC to start up in time for the next Dispatch Day) whose start is aborted by the ISO prior to its dispatch for that portion of its Start-Up Bid that corresponds to that portion of its start-up sequence that it completed prior to being aborted. Such determination shall be made for an entire Dispatch Day, and such determination shall be made separately for each long start-up time Generator. On the basis of such determination, the ISO shall pay a Bid Production Cost guarantee payment to the Supplier pursuant to Section 18.7 of Attachment C of this ISO Services Tariff.

4.6.6.7 BPCG for Demand Reduction in the Day Ahead Market

The ISO shall determine if a Demand Reduction Provider eligible under Section 18.8.1 of
Attachment C of this ISO Services Tariff for a Bid Production Cost guarantee payment for
Demand Reduction in the Day Ahead Market will not recover its Day Ahead Curtailment
Initiation Cost and its Day Ahead Demand Reduction Bid through Day Ahead LBMP revenues.
Such determination shall be made for an entire Day Ahead Market day, and such determination
shall be made separately for each Demand Side Resource. On the basis of such determination,
the ISO shall pay a Bid Production Cost guarantee payment to the Demand Reduction Provider
pursuant to Section 18.8 of Attachment C of this ISO Services Tariff.

4.6.6.8 BPCG for Special Case Resources

The ISO shall determine if a Supplier eligible under Section 18.9.1 of Attachment C of this ISO Services Tariff for a Bid Production Cost guarantee payment for a Special Case Resource will not recover its Minimum Payment Nomination through real-time LBMP revenues. Such determination shall be made for an entire Dispatch Day, and such determination shall be made separately for each Special Case Resource. On the basis of such determination, the ISO shall make a Bid Production Cost guarantee payment to the Supplier pursuant to Section 18.9 of Attachment C of this ISO Services Tariff.

4.6.6.9 Day Ahead BPCG for Demand Side Resources Scheduled to Provide Synchronized Operating Reserves and/ or Regulation Service

The ISO shall determine if a Supplier that bids Demand Side Resources committed by the ISO to provide synchronized Operating Reserves and/or Regulation Service in the Day Ahead Market will not recover its Day Ahead synchronized Operating Reserves Bid to provide the amount of synchronized Operating Reserves that it was scheduled to provide, and/or its Day Ahead Regulation Capacity Bid to provide the amount of Regulation Capacity that it was scheduled to provide. Such supplier shall be eligible under Section 18.10.1 of Attachment C to this ISO Services Tariff for a Day Ahead Bid Production Cost guarantee payment. Such determination shall be made for an entire Day Ahead Market day, and such determination shall be made separately for each Demand Side Resource. On the basis of such determination, the ISO shall make a Bid Production Cost guarantee payment to the Customer pursuant to Section 18.10 of Attachment C of this ISO Services Tariff.

4.6.6.10 Real Time BPCG for Demand Side Resources Scheduled to Provide Synchronized Operating Reserves and/or Regulation Service

The ISO shall determine if a Supplier that bids Demand Side Resources committed by the ISO to provide synchronized Operating Reserves and/or Regulation Service will not recover its real-time synchronized Operating Reserves Bid to provide the amount of synchronized Operating Reserves that it was scheduled to provide, and/or its real-time Regulation Capacity and Regulation Bids to provide Regulation Service. Such Supplier shall be eligible under Section 18.11.1 of Attachment C to this ISO Services Tariff for a real-time Bid Production Cost guarantee payment. Such determination shall be made for an entire Dispatch Day, and such determination shall be made separately for each Demand Side Resource. On the basis of such determination, the ISO shall make a Bid Production Cost guarantee payment to the Customer pursuant to Section 18.11 of Attachment C of this ISO Services Tariff.

4.7 Procurement of Station Power

A Generator may self-supply Station Power in accordance with the following provisions.

- 4.7.1 A Generator may self supply Station Power during any calendar month when either:
- 4.7.1.1 Its net output for that month is positive; or
- 4.7.1.2 Its net output for that month is negative and the Generator, during the same month, has available at other Generators owned by the same entity that owns the Generator positive net output in an amount at least sufficient to offset fully such negative net output (hereinafter referred to as "remote self-supply of Station Power"). A Generator may not remotely self-supply Station Power from Generators that are owned by its owner's corporate affiliates.
- 4.7.1.2.1 If an entity owns a portion of a jointly owned Generator it may remotely self-supply its other Generators up to the amount of its entitlement to Energy from the jointly-owned Generator provided that: (A) the entity has the right to call upon that Energy for its own use; and (B) the Energy entitlement is not characterized as a sale from the jointly owned Generator to any of its joint owners.
- 4.7.2 A Generator's net output for the month may be positive because either:
- 4.7.2.1 The Generator is physically supplying Energy for its Station Power needs, using its own facilities, and without using facilities that are owned by any Transmission Owner; or

- 4.7.2.2 The Generator's Station Power requirements for the month, including all Energy received for use as Station Power, regardless of its voltage or the metering point of receipt, are less than the amount of Energy that the Generator injects into the New York State Power System for the month.
- 4.7.3 The determination of net output under this Section 4.7 shall apply only to determine whether the Generator self-supplied Station Power during the month and will not affect the price of Energy sold or consumed by the Generator at any bus during any hour during the month.
- 4.7.4 When a Generator has positive net output for an interval and is delivering Energy into the New York State Power System, it will be paid the Real-Time or Day-Ahead LBMP at its bus, as appropriate, for all of the Energy delivered pursuant to the ISO Services Tariff. Conversely, when a Generator has negative net output for an interval and is self-supplying Station Power from the New York State Power System under Section 4.7.1.1 or 4.7.1.2, it will pay the Real-Time or Day-Ahead LBMP, as appropriate, for all of the Energy consumed, pursuant to the ISO Services Tariff.
- 4.7.5 The ISO will determine the extent to which each affected generator self-supplied its Station Power requirements or obtained Station Power from third-party providers (including corporate affiliates) during the Billing Period and will incorporate that determination in its accounting and billing. To the extent that Station Power deliveries from third parties, including corporate affiliates of a Generator's owner, involve an unbundled Transmission Service component, the

- Generator shall take Transmission Service under Part 5 of the ISO OATT unless the Generator has made other arrangements with the local Transmission Owner under the Transmission Owner's retail access tariff.
- 4.7.6 When a Generator self-supplies Station Power during any month according to Section 4.7.1.1, above, the Generator will not incur any charges for Transmission Service. When a Generator remotely self-supplies Station Power according to Section 4.7.1.2 above, the Generator shall, to the extent that Transmission Service is involved, pay for Transmission Service for the quantity of Energy that the Generator remotely self-supplies. Such Transmission Service shall be provided under Part 3 of the ISO OATT and shall be charged the hourly rate under Schedule 6.7 of the ISO OATT for Firm Point-to-Point Transmission Service, provided however, that the terms and charges under Schedules 6.1 through 6.3, 6.5, 6.6, 6.8 and 6.9 of the ISO OATT shall not apply to such service. The amount of Energy that a Generator transmits in conjunction with remote self-supply of Station Power will not be affected by any other sales, purchases, or transmission of Capacity or Energy by or for such Generator under any other provisions of the ISO OATT or ISO Services Tariff.
- 4.7.7 A Generator may remotely self-supply Station Power from an External Generator owned by the same entity that owns the Generator only if the External Generator has positive net output during the month and if the Generator has scheduled Imports into the NYCA from the External Generator during the month in an amount at least sufficient to offset fully its negative net output for the month.